本文将介绍一种基于深度学习和稀疏表达的人脸识别算法。
首先,利用深度学习框架(VGGFace)提取人脸特征;
其次,利用PCA对提取的特征进行降维;
最后,利用稀疏表达分类实现特征匹配。
我采用CMC曲线评价在AR数据库上的识别性能。
最后我还提供了整个过程的code。
2024/11/21 0:28:51 41.39MB 深度学习 稀疏表达SRC
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
SLAM技术是目前机器人、自动驾驶、增强现实等领域的关键技术之一,是智能移动平台感知周围环境的基础技术。
本文介绍了基于视觉传感器(单目、双目、RGB-D等相机)的SLAM技术的原理和研究现状,包括基于稀疏特征的SLAM、稠密/半稠密SLAM、语义SLAM和基于深度学习的SLAM。
然而,现有的系统与方法鲁棒性并不高,随着人工智能技术的发展,深度学习与传统的基于几何模型的方法相结合的趋势正在形成,这将推动视觉SLAM技术朝着长时间大范围实时语义应用的方向前进。
视觉SLAM算法的现状1、基于稀疏性特征的SLAM2、稠密SLAM和半稠密SLAM3、语义SLAM4、基于深度学习的SLAM
2024/11/13 18:25:29 23.44MB 计算机视觉 SLAM
1
基于深度学习的自然语言处理库
2024/10/14 2:20:22 12.15MB nlp
1
学习过程当中整理的基于深度学习的生物认证技术研究这块的人脸识别认证部分,讲了人脸识别的发展和深度学习的概念等等。
2024/9/30 12:44:50 513KB 深度学习 人脸
1
乳腺癌病理图像的自动分类具有重要的临床应用价值。
基于人工提取特征的分类算法,存在需要专业领域知识、耗时费力、提取高质量特征困难等问题。
为此,采用一种改进的深度卷积神经网络模型,实现了乳腺癌病理图像的自动分类;同时,利用数据增强和迁移学习方法,有效避免了深度学习模型受样本量限制时易出现的过拟合问题。
实验结果表明,该方法的识别率可达到91%,且具有较好的鲁棒性和泛化性
2024/8/3 5:11:41 632KB 深度学习 图像识别
1
android端,基于openCV与深度学习,实现快速准确的车牌识别。
平均识别耗时350ms左右,采集100样本识别准确率达到95%。
识别过程:1、使用openCV确定车牌左右、上下区域;
2、车牌倾斜判断与校正;
3、滑动切割字符;
4、深度学习对每个字符进行识别
2024/7/21 21:39:02 24.82MB 车牌识别
1
Web的动手Python深度学习这是由Packt发布的AnubhavSingh和SayakPaul编写的“的代码库。
集成神经网络架构以使用Flask,Django和TensorFlow构建智能Web应用这本书是关于什么的?有效地使用深度学习技术可以帮助您开发智能Web应用程序。
在本书中,您将介绍用于使用Python在Web开发中实施深度学习的最新工具和技术实践。
从机器学习的基础知识开始,您将专注于DL和神经网络的基础知识,包括常见的变体,例如卷积神经网络(CNN)。
您将学习如何使用不同标准Web技术堆栈的前端将它们集成到网站中。
然后,本书通过为自定义模型创建RESTfulAPI,帮助您获得使用Python库(例如Django和Flask)开发支持深度学习的Web应用程序的实践经验。
稍后,您将探索如何为GoogleCloud和AmazonWebServices(AWS)上基于深度学习的Web部署设置云环境。
本书涵盖了以下令人兴奋的功能:探索深度学习模型并在浏览器中实现使用Django和Flask设计基于Web的智能客户端使用不同的基于Py
2024/6/19 18:14:16 44.25MB flask aws django deep-learning
1
人脸识别依赖于深度学习,识别率高达99.15%,值得学习。
2024/6/19 2:03:27 2.1MB deeplearning face detect
1
深度学习FasterR-CNN的多帧背景还原解决动态背景的问题。
针对动态背景下的目标提取问题。
本文提出了基于深度学习FasterR-CNN的多帧背景还原的前景目标提取算法。
基于FasterR-CNN对前景目标的单帧提取能力,对每一帧分别进行检测,并提取每帧的背景,经过图像融合还原出完整的不含目标的背景图像,并通过滤波与膨胀腐蚀等精确的提取前景目标。
2024/6/1 6:06:55 1KB fasterRCNN 目标提取 动态背景
1
共 81 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡