雷达成像原理(Word完整版)第一章雷达基础知识51.1雷达的定义51.2雷达简史51.3电磁波51.4脉冲81.5分贝值表示方法91.6天线101.7雷达散射截面122.1傅立叶变换142.2雷达硬件组成152.2.1振荡器152.2.2波形产生152.2.3混频器162.2.4调制162.2.5发射机162.2.6波导162.2.7双工器172.2.8天线172.2.9限幅器172.2.10低噪放大器182.2.11系统噪声182.2.12解调192.2.13正交混频202.2.14A/D转换器212.3天线222.3.1天线的概述232.3.2方向性函数242.3.3天线增益272.3.4天线口面上辐射场的渐变处理282.3.5余割平方天线292.4相控阵天线302.4.1一维线阵列天线312.4.2二维相控阵33第三章外部环境对雷达系统的干扰343.1雷达散射截面(RCS)343.1.1简单目标的RCS343.1.1.1理想导体球353.1.1.2平板363.1.1.3角反射器363.1.1.4Luneburg透镜373.1.2复杂目标的RCS383.1.3计算RCS的方法383.1.4极化因素383.1.4.1极化散射矩阵383.1.4.2简单目标的极化散射矩阵393.1.4.3更一般的极化基403.2传播与杂波413.2.1雷达波在大气中的折射413.2.2地表弯曲效应423.2.3雷达波在空气中的衰减433.2.4雷达波在雨水中的衰减433.2.5雷达波在地表的反射433.2.6多路效应443.2.7表面杂波反射453.2.8降水引起的雷达反向散射463.3外部噪音46第四章:基本雷达信号处理504.1从噪声和杂波中间测回波信号504.1.1检测器特点504.1.2检测的基本理论504.1.3噪声中检测无波动目标524.1.3.1:已知相位的单脉冲的相参检测524.1.3.2单脉冲包络检测524.1.3.3n个脉冲的相参积分:524.1.3.4n个非相参脉冲的积分变换损失:534.1.4施威林情形534.1.4.2波动损失534.1.5:噪声中目标检测小结:544.1.6:次积分:无振动目标544.1.7目标554.2雷达波形554.2.1总的雷达信号554.2.2匹配滤波器564.2.3:匹配滤波器对于延迟,多谱勒平移、信号的响应,584.2.4雷达模糊函数584.2.5例1:一个单脉冲;
距离和速度分辨率604.2.6例2:线性频率调制脉冲;
脉冲压缩614.2.7例3:相关脉冲序列:在距离和速度上的分辨率和模糊度624.2.7.1单脉冲串634.2.7.2线性调频脉冲串644.2.7.3其它脉冲序列654.2.8相差处理间隔664.2.9CPI的例子,求解雷达方程664.3雷达测量精确度674.3.1单脉冲674.3.2卡尔曼绕界限674.3.2.1在频率上得卡尔曼-绕界限684.3.2.2延迟上的卡尔曼绕界限694.3.2.3角度上的卡尔曼--绕界限694.3.2.4卡尔曼-绕界限的例子。
704.3.2.5总结:71第六章成像雷达简介726.1距离—速度压缩726.2旋转目标:逆合成孔径雷达726.3逆合成孔径雷达用于大范围目标756.4点扩展函数766.5标准二维逆合成孔径雷达:小角度776.6二维逆合成孔径雷达:大角度806.7三维逆合成孔径雷达816.8波数空间与极化设计方法816.9ISAR注释826.10ISAR的其他情况836.11近场ISAR846.12变化情况未知的目标及旋转85第七章合成孔径雷达897.1SAR897.1.1SAR模型907.1.2距离和速度等值线917.1.3动态补偿917.1.4斜面或平面927.1.5SAR对脉冲重复频率的要求927.1.6距离转移937.2SAR波形及处理947.2.1快时处理947.2.1.1SAR中的线性调频(LFM)947.2.1.2非线性调频处理957.2.1.3非畸变过程967.2.1.4LFM脊态987.2.2慢时(slowtime)处理987.3SAR成像质量997.
2024/12/13 4:13:01 1.44MB 雷达 雷达成像 原理
1
stm32f103平台的ADS1256驱动代码,ADS1256为TI的一款高性能低噪声ADC
2024/12/12 21:20:31 3.73MB ADS1256
1
针对传统支持向量机(SVM)算法在数据不均衡情况下无法有效实现故障检测的不足,提出一种基于过抽样和代价敏感支持向量机相结合的故障检测新算法。
该算法首先利用边界人工少数类过抽样技术(BSMOTE)实现训练样本的均衡。
为减少人工增加样本带来的噪声影响,利用K近邻构造一个代价敏感的支持向量机(CSSVM)算法,利用每个样本的代价函数消除噪声样本对SVM算法分类精度的影响。
将该算法应用在轴承故障检测中,并同传统的SVM算法,不同类代价敏感SVM-C算法,SVM和SMOTE相结合的算法进行比较,试验结果表明当样本不均衡时,建议算法的故障检测性能较其它算法有显著提高。
1
桂林电子科技大学2013年硕士研究生入学考试复试试卷考试科目代码:204考试科目名称:通信原理A请注意:答案必须写在答题纸上(写在试卷上无效)。
一、 问答题(每题5分,总共50分)(1) 根据你所学的通信原理知识,请回答下列问题:请画出数字通信系统模型;
简述各个组成部分的主要功能和特点;
回答衡量数字通信系统性能好坏的主要性能指标。
(2) 通信系统的同步需考虑哪些?(3) 调制信道模型用加性干扰和乘性干扰表示信道对于信号传输的影响,根据乘性干扰的不同,信道可分为哪两种?(4) 请写出信道容量的公式,有哪几个主要参数,其相互关系如何?(5) 实际中为了减小码间串扰,需要采用什么措施进行补偿?眼图为直观评价接收信号的质量提供了一种有效的实验方法,它的作用是什么?(6) 二进制的数字调制有那两种基本方式?试比较有效性和可靠性。
(7) 试写出下列英文缩写的中文全称:QAMCDMAOFDMQPSKAWGN。
(8) 模拟信号经过哪几个步骤变成数字信号?其中哪个步骤会带来什么误差?(9) 某数字传输系统的码元速率是1200b/s,接收端在0.5个小时内共收到216个错误码元,试计算该系统的误码率Pe。
(10) 英汉互译:(英译汉)Wedescribedvarioustypesofmodulationmethodsthatmaybeusedtotransmitdigitalinformationthroughacommunicationchannel.Aswehaveobserved,themodulatoratthetransmitterperformsthefunctionofmappingtheinformationsequenceintosignalwaveforms.(汉译英)本章将研究噪声对调制系统可靠性的影响,特别是深入研究各种调制方法的发送信号受到加性高斯白噪声恶化时,最佳接收机的设计和性能特征。
2024/12/6 14:58:40 3.22MB 桂电 考研 复试
1
给定一有效信号(正弦),加高斯白噪声,信噪比为20dB,设计一IIR滤波器。
已知通带衰减0.3dB,阻带衰减30dB,其他自选。
并且还设计一FIR滤波器。
1
MATLAB仿真MIMO-OFDM通信系统,内含编码、调制、信道估计等。
还有噪声方差估计
2024/12/1 12:18:12 85KB MATLAB MIMO OFDM
1
实验七白化滤波器的设计⒈ 实验目的了解白化滤波器的用途,掌握白化滤波器的设计方法。
⒉ 实验原理在统计信号处理中,往往会遇到等待处理的随机信号是非白色的,例如云雨、海浪、地物反射的杂乱回波等,它们的功率谱即使在信号通带内也非均匀分布。
这样会给问题的解决带来困难。
克服这一困难的措施之一是对色噪声进行白化处理通信类大二随机信号处理
2024/12/1 11:54:17 391KB 数字滤波器 白噪声
1
人脸识别是一个非常困难的模式识别问题,具有非常广阔的应用前景。
一个人脸识别系统包括预处理、特征提取和分类器设计三个部分,对输入的人脸图像进行预处理是人脸识别过程中的一个重要步骤。
人脸图像由于在生成、传输或变换过程中会受到各种因素的干扰和影响,从而产生噪声。
为了保证提取的特征对人脸在图像中的大小、位置和偏斜具有不变性,以及对光照条件具有不敏感性,故特别需要对人脸图像进行预处理。
包括人脸识别技术分析研究及各种算法
2024/11/29 13:31:11 3.23MB 人脸识别
1
针对传感器在信号采集时易受噪声干扰影响检测精度的问题,提出一种基于卡尔曼预测的指定次谐波电流无差拍控制方法.该方法是通过离散傅里叶谐波检测方法检测出电网中指定次谐波含量,建立当前的谐波方程,通过卡尔曼算法预测出下一补偿时刻该次谐波的相位和幅值,从而确定该补偿时刻的指令电流.研究结果表明:卡尔曼算法预测同时可以滤除干扰信号,实现指定次谐波电流的高精度无差拍控制.研究结果突破了传统无差拍控制受噪声干扰的问题,实现了电网中含量较高的5、7次谐波采用单独检测与单独补偿,对提高有源电力滤波器补偿精度具有实际应用价值.
1
书名:无线通信基础原书名:FundamentalsofWirelessCommunication原出版社:CambridgeUniversityPress分类:电子电气>>通信作者:DavidTse,PramodViswanath译者:李锵周进等译;
马晓莉审校出版日期:2007-06-30语种:简体中文开本:16开页数:440定价:59.00元人民币目录第1章绪论11.1本书目标11.2无线系统21.3本书结构4第2章无线信道72.1无线信道的物理建模72.1.1自由空间、固定发射天线与接收天线82.1.2自由空间、运动天线92.1.3反射墙、固定天线102.1.4反射墙、运动天线112.1.5地平面反射122.1.6由距离和阴影引起的功率衰减132.1.7运动天线、多个反射体142.2无线信道的输入/输出模型142.2.1无线信道的线性时变系统142.2.2基带等效模型162.2.3离散时间基带模型182.2.4加性白噪声212.3时间相干与频率相干222.3.1多普勒扩展与相干时间222.3.2时延扩展与相干带宽232.4统计信道模型252.4.1建模基本原理252.4.2瑞利衰落与莱斯衰落262.4.3抽头增益自相关函数272.5文献说明312.6习题31第3章点对点通信:检测、分集与信道不确定性363.1瑞利衰落信道中的检测363.1.1非相干检测363.1.2相干检测393.1.3从BPSK到QPSK:自由度研究413.1.4分集433.2时间分集443.2.1重复编码443.2.2超越重复编码473.3天线分集523.3.1接收分集533.3.2发射分集:空时码543.3.3MIMO:一个2×2实例563.4频率分集613.4.1基本概念613.4.2具有ISI均衡的单载波623.4.3直接序列扩频673.4.4正交频分多路复用703.5信道不确定性的影响753.5.1直接序列扩频的非相干检测763.5.2信道估计773.5.3其他分集方案793.6文献说明813.7习题81第4章蜂窝系统:多址接入与干扰管理884.1概述884.2窄带蜂窝系统904.2.1窄带分配:GSM系统914.2.2对网络和系统设计的影响924.2.3对频率复用的影响934.3宽带系统:CDMA944.3.1CDMA上行链路954.3.2CDMA下行链路1054.3.3系统问题1064.4宽带系统:OFDM1074.4.1分配设计原理1084.4.2跳频模式1094.4.3信号特征与接收机设计1104.4.4扇区化1114.5文献说明1124.6习题113第5章无线信道的容量1215.1AWGN信道容量1215.1.1重复编码1225.1.2填充球体1225.2AWGN信道的资源1255.2.1连续时间AWGN信道1255.2.2功率与带宽1265.3线性时不变高斯信道1305.3.1单输入多输出(SIMO)信道1305.3.2多输入单输出(MISO)信道1315.3.3频率选择性信道1315.4衰落信道的容量1365.4.1慢衰落信道1365.4.2接收分集1385.4.3发射分集1405.4.4时间分集与频率分集1435.4.5快衰落信道1465.4.6发射端信息1495.4.7频率选择性衰落信道1565.4.8总结:观点的转变1565.5文献说明1585.6习题159第6章多用户容量与机会通信1676.1上行链路AWGN信道1686.1.1逐行干扰消除获得的容量1686.1.2与传统CDMA的比较1706.1.3与正交多址接入的比较1716.1.4一般K用户上行链路容量1726.2下行链路AWGN信道1736.2.1对称情况:获取容量的两种方案1746.2.2一般情况:叠加编码获取容量1766.3上行链路衰落信道1796.3.1慢衰落信道1796.3.2快衰落信道1806.3.3完整的信道辅助信息1826.4下行链路衰落信道18
2024/11/22 12:06:17 11.83MB 通信 无线 无线通信基础
1
共 607 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡