基于主动形状模型ASM和主动表面模型AAM提出了一种融合改进的ASM和AAM的人脸形状特征点定位算法利用ASM定位外轮廓的形状特征点AAM定位内部形状特征点采用对部分关键特征点使用二维梯度的方法以提高特征点搜索的准确性利用眼鼻和嘴这些关键特征点的定位信息初始化人脸的平均形状以改善初始位置不当造成的搜索失败建立多尺度的ASM以提高收敛速度实验结果表明本文方法比传统的ASMAAM方法以及已有的改进算法IASM和PAAM定位更精确
2023/7/5 18:37:49 407KB ASM、AAM
1
简单的遗传算法,计算函数最值.functionga_main()%遗传算法程序%n--种群规模%ger--迭代次数%pc---交叉概率%pm--变异概率%v--初始种群(规模为n)%f--目标函数值%fit--适应度向量%vx--最优适应度值向量%vmfit--平均适应度值向量clearall;closeall;clc;%清屏tic;%计时器开始计时n=20;ger=100;pc=0.65;pm=0.05;%初始化参数%以上为经验值,可以更改。
%生成初始种群v=init_population(n,22);%得到初始种群,22串长,生成20*22的0-1矩阵[N,L]=size(v);%得到初始规模行,列disp(sprintf('Numberofgenerations:%d',ger));disp(sprintf('Populationsize:%d',N));disp(sprintf('Crossoverprobability:%.3f',pc));disp(sprintf('Mutationprobability:%.3f',pm));%sprintf可以控制输出格式%待优化问题xmin=0;xmax=9;%变量X范围f='x+10*sin(x.*5)+7*cos(x.*4)';%计算适应度,并画出初始种群图形x=decode(v(:,1:22),xmin,xmax);"位二进制换成十进制,%冒号表示对所有行进行操作。
fit=eval(f);%eval转化成数值型的%计算适应度figure(1);%打开第一个窗口fplot(f,[xmin,xmax]);%隐函数画图gridon;holdon;plot(x,fit,'k*');%作图,画初始种群的适应度图像title('(a)染色体的初始位置');%标题xlabel('x');ylabel('f(x)');%标记轴%迭代前的初始化vmfit=[];%平均适应度vx=[];%最优适应度it=1;%迭代计数器%开始进化whileit<=ger%迭代次数0代%Reproduction(Bi-classistSelection)vtemp=roulette(v,fit);%复制算子%Crossoverv=crossover(vtemp,pc);%交叉算子%Mutation变异算子M=rand(N,L)<=pm;%这里的作用找到比0.05小的分量%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;%两个0-1矩阵相乘后M是1的地方V就不变,再乘以2.NICE!!确实好!!!把M中为1的位置上的地方的值变反%这里是点乘%变异%Resultsx=decode(v(:,1:22),xmin,xmax);%解码,求目标函数值fit=eval(f);%计算数值[sol,indb]=max(fit);%每次迭代中最优目标函数值,包括位置v(1,:)=v(indb,:);%用最大值代替fit_mean=mean(fit);%每次迭代中目标函数值的平均值。
mean求均值vx=[vxsol];%最优适应度值vmfit=[vmfitfit_mean];%适应度均值it=it+1;%迭代次数计数器增加end
2023/7/1 23:41:32 4KB 遗传算法
1
有段代码可以设置java3d的视点的初始位置,并且处理了视点视角的坐标的混乱的问题,可以动态的改变视点的坐标
2023/2/4 21:58:15 1KB 视点 初始位置 java3d
1
基于pll的高频注入法,用于低速/零速无位置传感器的初始位置检测,运转控制,d轴注入高频正弦信号,通过带通滤波器提取高频信号,经过sinwt调制,通过低通滤波器进行位置提取
2019/3/16 22:18:40 1.53MB matlab 高频注入法 pll
1
八数码问题是人工智能经典难题之一。
问题是在3×3方格盘上,放有八个数码,剩下一个为空,每一空格其上下左右的数码可移至空格。
问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始位置转化为目标位置。
本文引见用A星算法,采用估计值h(n)(曼哈顿距离)和g(m)(当前深度)的和作为估计函数。
2015/4/21 16:14:16 506KB 人工智能 课程设计 启发函数 八数码
1
第1章结论1.1虚拟样机技术的研究范围1.2ADAMS软件1.3虚拟样机技术的相关技术第2章机械系统的建模和结构分析2.1机械系统的组成2.2参考机架2.3坐标系2.3.1坐标系2.3.2确定不同坐标系位置和方向的方法2.4机械系统的自由度2.4.1机械系统的自由度2.4.2计算机械系统自由度时应注意的问题2.5速度.加速度和角加速度2.6刚体运动方程第3章ADAMS软件操作初步3.1ADAMS软件包3.2虚拟样机仿真分析基本步骤3.3启动ADAMS/View程序3.4ADAMS/View程序屏幕3.5ADAMS/View命令的基本操作3.5.1主工具箱方式3.5.2命令菜单方式3.5.3弹出式菜单方式3.5.4快捷工具栏3.5.5对话框3.5.6鼠标的应用3.5.7使用通配符3.5.8使用命令窗口和命令浏览器3.6ADAMS/View数据库3.6.1ADAMS/View命名层次和规则3.6.2打开新数据库3.6.3保存当前数据库3.6.4后退一步操作3.6.5取消操作3.6.6退出ADAMS/View3.7视图窗口设置3.7.1选择视图窗口3.7.2改变窗口中的视图方向3.7.3正侧投影图和透视图3.7.4移动和旋转视图3.7.5设置视图中心3.7.6缩放视图3.8显示方式设置3.8.1设置构件和模型的显示方式3.8.2设置背景颜色3.8.3模型显示方式设置3.8.4设置工作栅格3.8.5设置图标3.8.6显示视图辅助信息3.8.7坐标窗口操作3.8.8设置屏幕和打印字体3.8.9保存和重新设置3.9定义操作环境3.9.1定义地面坐标系3.9.2单位设置3.9.3定义重力3.9.4指定保存文件位置3.10信息管理3.10.1信息类型3.10.2信息窗口操作3.11协助信息3.12练习第4章虚拟样机几何建模4.1几何建模预备知识4.1.1几何体类型4.1.2几何体坐标系4.1.3几何体的命名4.1.4几何建模的准备4.2几何建模工具4.3绘制基本几何形状4.4简单形体几何建模4.5复杂形体几何建模4.5.1连接线段4.5.2组合形体4.5.3添加几何体细节结构4.6修改几何形体4.7修改构件特性4.7.1构件特性修改对话框4.7.2修改构件质量,转动惯量和惯性积4.7.3修改初始速度4.7.4修改初始位置和方向4.7.5设置材料4.7.6使用特性修改对话框工具图标4.8练习第5章约束机构5.1约束类型5.2约束工具5.3常用运动副5.3.1常用运动副5.3.2施加齿轮副5.3.3施加关联副5.3.4修改运动副5.4指定约束5.5凸轮机构5.6定义机构的运动5.6.1运动的类型和定义值5.6.2约束连接的相对运动5.6.3约束点的运动5.7约束机构的若干注意点5.8练习第6章施加载荷6.1基本概念6.1.1定义力的大小和方向6.1.2调用施加力工具6.1.3作用力6.2施加作用力6.2.1施加单作用力和力矩6.2.2施加组合作用力6.3柔性连接6.3.1拉压弹簧阻尼器6.3.2扭转弹簧阻尼器6.3.3轴套力6.3.4施加无质量梁6.3.5力场6.4接触力6.4.1球-球碰撞6.4.2施加接触力6.5练习第7章ADAMS/View4模的相关技术7.1储存和获得数据7.1.1数据单元类型7.1.2数组单元7.1.3曲线数据单元7.1.4样条数据单元7.1.5矩阵单元7.1.6字符串数据单元7.2用系统单元建立方程7.3编辑样机模型7.3.1选择对象7.3.2使用表格编辑器编辑对象7.3.3修改.复制.删除和重新命名对象7.3.4移动和旋转对象7.3.5对象的无效处理7.3
2017/4/13 4:02:10 16.89MB 郑建荣 ADAMS
1
编写一个图形用户界面程序,包含两个按钮,一个信息标签(label)和一个显示面板,两个按钮分别为“掷色子”和“挪动”,在显示面板中显示一个小汽车(用小圆\矩形以及线绘制),随机设定小汽车的初始位置,当点击“掷色子”按钮,随机产生挪动信息(上移,下移,左移,右移,挪动几步),并显示在信息标签中,点击挪动,按照产生的挪动信息,让小汽车进行挪动
2018/1/20 1:45:50 25KB 石大 答案
1
场景中有了灯光,大海,天空还有飞机,飞机是通过组合简单的立方体创建的外形,飞机能跟随鼠标移动的轨迹运动。
飞机上还有一个飞行员。
头发飘动是通过对每个顶点进行循环运动模拟的。
为了产生大海的波浪效果,我们使圆柱的每个顶点绕其初始位置旋转,方法是使其具有随机速度旋转和随机距离(旋转半径)。
2015/2/9 3:41:52 205KB Web开发源代码 JS/Ajax源代码
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡