代码分为read_can_use.m和main_can_ues.m先运行read_can_use.m读取图片的像素值,使用奇异值分解的方法得到对应的特征。
程序预设了只读取前5个人的人脸图片,可以自己改成最多15个人。
然后运行main_can_use.m,程序会输出112323,每个数字代表一张图片最有可能的识别类别(就是人的编号)。
对每个人的11张图片,取前7张训练网络,后4张测试网络,取前5个人进行实验。
所以共有35个训练样本,20个测试样本。
比如输出的结果是111122123333…..,因为每4个数字是属于同一个人的,前四个都是1则都预测正确,第二组的4个数字2212中的那个1就是预测错误(本来是2预测成了1)。
由于参数的随机初始化,不保证每次的结果都相同。
2025/4/25 5:01:34 1.39MB 神经网络 人脸识别
1
谐小波分解在matlab上实现,可以应用
2025/4/21 3:49:13 2KB 谐小波
1
傅里叶分解方波信号,单边指数信号等展开为傅里叶级数……
2025/4/20 13:31:08 1.45MB 傅里叶分解
1
介绍了一种新的非平稳信号分析方法———局部均值分解(Localmeandecomposition,简称LMD)。
LMD方法可以自适应地将任何一个复杂信号分解为若干个具有一定物理意义的PF(Productfunction)分量之和,其中每个PF分量为一个包络信号和一个纯调频信号的乘积,从而获得原始信号完整的时频分布。
本文首先介绍了LMD方法,然后将LMD方法对仿真信号进行了分析,取得了满意的效果,最后将其和经验模式分解EMD(Empiricalmodedecomposition)方法进行了对比,结果表明在端点效应、迭代次数等方面LMD方法要优于EMD方法。
2025/4/17 22:13:29 636KB 经验模式分解
1
这是一个用c#语言写成的矩阵类,可以完成矩阵的各种准确的数学计算,如:矩阵的加减乘除、转置、逆运算、复矩阵的乘法、求行列式值、求矩阵秩、一般实矩阵的奇异值分解、求广义逆、约化对称矩阵为对称三对角阵、实对称三对角阵的全部特征值与特征向量的计算、求赫申伯格矩阵全部特征值、求实对称矩阵特征值与特征向量等.可以将其做成dll用到其他的环境下。
填补了.net中没有矩阵的空白,是你进行科学计算不可或缺的插件之一。
2025/4/15 5:19:10 98KB c# 矩阵
1
用小波处理一维信号matlab实验,包括小波分解,阈值选择等。
2025/4/7 12:28:22 992B 小波 降噪
1
利用小波变换对心音信号进行去噪处理,之后利用EMD分解,得到去噪信号的IMF
2025/3/31 11:51:03 276KB matlab
1
稀疏分解;
ksvd算法;
matlab代码
2025/3/31 6:30:54 12KB ksvd算法
1
MOEA/DwithAdaptiveWeightAdjustment基于分解的动态权重算法
2025/3/30 1:01:58 23KB MOEA/D Adaptive Weight (MOEA/D
1
独立分量分析是一类多通道信号分解方法,是信号处理技术研究邻域的一项前沿热点。
2025/3/29 17:53:47 19.45MB ICA
1
共 589 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡