用matlab语言的决策树算法源码。
用于数据挖掘的
2025/6/16 7:06:58 3KB 数据挖掘 决策树 源码 c4.5
1

数据挖掘技术在科技信息管理中的应用研究一、数据挖掘的定义与目的数据挖掘是一种从大量数据中抽取或“挖掘”信息的过程,旨在发现数据中的潜在规律、模式和关联关系。
它不是简单的数据查询或者数据处理,而是通过特定算法对数据进行分析,以期得到非平凡的、隐含的、先前未知的且具有潜在价值的信息或知识。
这一技术对于科技信息管理尤其重要,因为它可以帮助管理者从海量信息中提取有价值的数据,为决策提供科学依据。
二、数据挖掘在科技信息管理中的应用科技管理信息化的发展导致了信息量的大幅增长,给信息的提取带来了难度。
数据挖掘技术可以有效地挖掘海量数据背后未知的规律或模式,为科技管理决策提供了有力的依据和支持。
在科技信息管理中,数据挖掘可以用来分析科技人员、科技成果、科技项目之间的关联关系,通过数据挖掘模型,发现三者之间的深层关系,为科技管理提供决策支持。
三、数据挖掘技术的分类数据挖掘技术可以分为多个类别,其中包括关联规则、决策树、聚类、分类、变化和偏差分析、回归分析、Web页挖掘等。
每种技术有其特定的适用场景和分析方法。
例如,关联规则挖掘主要通过发现不同数据项集之间的隐藏关联规则来工作,而决策树分析则是构建一个模型,用以预测目标变量的值。
四、关联规则与Apriori算法关联规则挖掘在数据挖掘中是一种重要的技术。
它通过在数据库中找出置信度和支持度都大于给定阈值的规则,揭示数据项集之间的潜在关联。
Apriori算法是挖掘布尔关联规则频繁项集的算法之一,基于两阶段频集的递推思想,主要通过逐层搜索迭代方法,从大量数据中找出项集之间的关系或规则。
该算法对于处理科技信息管理中的大量数据尤为有效。
五、数据挖掘过程数据挖掘的过程可以分为几个阶段:问题定义、数据抽取、数据预处理、数据挖掘、结果评估与表示等。
在问题定义阶段,首先要明确数据挖掘的目标和任务;
数据抽取阶段,是从数据库或数据仓库中提取相关数据;
数据预处理阶段,对提取的数据进行清洗、转换等操作,使之适合进行挖掘;
数据挖掘阶段,运用特定算法对预处理后的数据进行分析,以提取信息和知识;
最后在结果评估与表示阶段,对挖掘出的模式进行评价,并以易于理解的方式展示结果。
六、数据挖掘在安阳市科技信息管理系统中的应用实例文章中提到安阳市科学技术信息研究所利用数据挖掘技术,通过安阳市科技信息管理系统,对512名科技人员、899项科技成果和3014项科技项目进行关联分析。
通过构建数据挖掘模型,研究科技人员的年龄、职称、单位等信息与所产出的科技成果、参与的科技项目之间的关联规则。
通过这种方式,不仅能够发现隐藏的关系和规律,还能够为科技人才合理分配和科技项目管理提供参考。
七、数据准备与处理数据准备是数据挖掘过程中的首要步骤,它包括数据选择、数据预处理和数据变换等环节。
数据选择需要从现有的数据库或数据仓库中提取相关数据,形成目标数据集。
数据预处理和变换则是为了消除数据中的噪声和不一致性,提高数据质量,确保挖掘结果的准确性。
八、结论随着信息化和大数据时代的到来,数据挖掘技术已经成为科技信息管理不可或缺的重要工具。
它能够从庞大的科技信息数据库中提炼出有价值的信息,帮助管理者做出更加精准和高效的决策。
通过持续研究和实践,数据挖掘在科技信息管理中的应用将更加广泛,对科技进步的贡献也将更加显著。
2025/6/16 2:41:25 274KB
1
treeplan工具,测试通过,决策树,excel,
2025/6/13 15:26:30 133KB excel 加载宏
1
1.使用Python实现基本的决策树算法;
2.主要使用pandas的DataFrame实现;
3.为防止过度拟合,在小于20个记录时,直接选取记录中最多类别;
3.没有画决策树图
2025/6/8 7:10:33 2KB 数据挖掘 Python 决策树
1
java数据挖掘C4.5决策树的动态生成.
2025/6/4 0:39:30 892KB java
1
天气因素有温度、湿度和刮风等,通过给出数据,使用决策树算法学习分类,输出一个人是运动和不运动与天气之间的规则树。
2025/5/6 15:11:34 219KB 决策树
1
决策树Java代码实现
2025/4/2 1:28:43 11KB 决策树Java
1
ID3源代码
2025/3/24 17:54:30 165KB ID3
1
1-ENVI基础知识2-影像预处理基础3-自定义坐标系4-MODIS几何校正5-地形图的几何校正6-几何校正(RapidEye几何校正)7-TM图像与SPOT图像配准8-TM图像校正(矢量上选点)9-图像融合10-图像镶嵌11-图像裁剪12-图像增强13-监督分类(样本选择)14-监督分类(分类)15-监督分类(分类后处理)16-监督分类(精度验证)17-非监督分类18-快速制图19-三维可视20-基于GLT的几何校正(风云三号气象卫星为例)21-正射校正22-正射校正(选择控制点QB校正)23-RapidEye正射校正24-构建RPC正射校正(BuildRPC)25-图像自动配准26-基于专家知识决策树分类27-决策树自动阈值分类28-面向对象图像分类(城市信息提取)29-面向对象耕地信息提取30-基于立体像对的DEM提取31-DEM分析与应用32-遥感动态监测33-林冠状态遥感变化监测34-森林砍伐监测35-耕地信息变化监测36-雷达图像基本处理37-高光谱基础38-传感器定标和大气校正39-快速大气校正40-波谱库浏览与建立41-植被识别42-矿物识别43-基于波谱沙漏工具的矿物识别44-植被指数计算和分析45-波段运算(bandmath)46-ENVI的二次开发47-IDL简介48-遥感与GIS一体化
2025/2/19 18:06:16 251KB ENVI IDL 视频 培训
1
matlab_决策树C4.5算法源代码,支持matlab环境
6KB 决策树
1
共 148 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡