应用4个框标坐标对航片进行解析内定向,求仿射变换方程系数,将像素坐标转换为像片坐标。
数据格式参考Debug中data文件夹中的数据格式。
2023/3/4 10:11:05 328KB 摄影测量 内定向 仿射变换
1
尤承业编著的《解析几何》是学习几何学的入门教材。
书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),等讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和保距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。
全书共分五章,每章内都附有一定数量的习题,书末附有习题答案和提示,便于读者深入学习或自学。
《解析几何》突出几何思想的教育,强调形与数的结合;
方法上强调解析法和综合法并重;
内容编排上采用"实例-理论-应用"的方式,具体易懂;
内容选取上兼顾各类高校的教学情况,具有广泛的适用性。
《解析几何》表达通顺,说理严谨,阐述深入浅出。
因而,《解析几何》是一本颇具特色、为广大高校欢迎的解析几何课程教材。
《解析几何》可作为综合性大学和师范类大学数学系、物理系等相......ISBN:9787301045800
2023/2/16 22:36:19 9.57MB 解析几何 尤承业
1
该函数是对两组点集进行RANSAC婚配,模型采用仿射变换模型,代码用C/C++编写,供大家参考学习
2017/10/11 15:30:50 3KB RANSAC 仿射变换模型
1
次要功能:本软件是一款集地图投影、坐标转换、GPS高程拟合和常用测绘工具于一身的共享软件。
本软件功能强大,主体分四大部分:地图投影、坐标转换、GPS高程拟合和测绘工具。
地图投影包括Albers等面积投影、UTM投影、墨卡托投影、高斯-克吕格投影、兰勃特投影和横轴墨卡托投影等;
每种投影可以选择不同椭球,设定各自的投影参数;
投影方式有三中:单点、多点(表格)、文件。
坐标转换包括三参数、七参数、仿射变换(线性)等转换方式;
源坐标和目标坐标可设置,包括椭球、投影方式和坐标类型(大地坐标、平面坐标和空间直角坐标)。
GPS高程包括12种拟合方法。
测量工具多多:计算图幅号、带号、图幅范围等
2020/11/19 10:55:22 466KB 软件:CugMapProject2.0
1
本资源主要分为三个部分:车牌定位字符分割字符识别,每个部分都可单独运行。
车牌定位采用数学形状学和颜色特征相结合的方法。
首先对图片进行开闭运算、轮廓检测等数学形状学操作突出车牌区域,然后依据车牌的形状特征去除部分干扰区域,并利用仿射变换对可疑车牌区域进行倾斜矫正,最后根据车牌颜色特征选取最终区域,同时确定车牌的颜色。
字符分割基于投影法,利用二值化图像像素的分布直方图进行分析。
其中水平投影确定字符区域并去除上下边框,垂直投影找出相邻字符的分界点,并通过适当算法组合分离的汉字和去除车牌上的分隔点、边缘等干扰;
字符识别基于keras框架,首先搭建卷积神经网络对训练集进行训练,准确率达到97.87%,然后利用训练好的模型对分割下的字符逐一进行识别,最终组成车牌号码,实现车牌识别的目标。
1
在中国安防产业中视频监控作为最重要的信息获取手段之一,能对目标有效的提取是重要而基础的问题,因此本文在此背景下,围绕对监控视频的前景目标有效的提取问题,研究了关于1)静态背景、动态背景的前景目标提取,能在背景复杂化的条件下,将运动的目标;
2)带抖动视频;
3)静态背景下多摄像头对多目标提取;
4)出现异常事件视频的判断等问题。
给出了在不同情况下的前景目标提取方案。
问题一是针对静态背景且摄像头稳定的情况下,如何对前景目标提取的问题。
在题目要求的基础上,通过对附件2中几组视频的分析,我们发现所有前景目标的运动短暂且光线明暗变化不明显。
由于传统的Vibe算法能抑制鬼影但是运行效果不理想,因此采用建立在帧差法上改进的Vibe算法模型求解问题。
并和传统的Vibe算法做对比,结果显示改进的Vibe算法明显优于传统的算法。
而且对我们的算法模型做了效果评价。
详细数据参考正文与附录。
问题二是在背景为动态(如有水波的产生)的情况下,对前景目标的提取问题。
在此问题中,由于动态背景存在使得提取出的图像帧具有大量的干扰噪声,对前景目标的识别和提取造成干扰,因此我们提出一种基于全局外观一致型的运动目标检测法。
在用Vibe算法对场景预检测的基础上,建立混合高斯模型分别对前景和背景进行全局外观建模,将运动目标检测出来,再引入超像素去噪,进一步优化结果。
详细结果参考正文与附录。
问题三是在问题一、二基础上的进一步深化。
问题一及问题二是建立在摄像机自身稳定的基础上,而问题三则是在摄像机抖动的情况下。
由于摄像机抖动一般具有旋转和平移,因此我们建立了坐标变换模型,以仿射变换作为模型基础,结合改进的高精度鲁棒的RANSAC算法提取前景目标,并对比灰度投影法,比较两种模型效果。
具体效果见正文与附录。
问题四是对前三个问题的综合应用。
运用基于混合高斯模型背景建模Vibe算法,对前景目标进行提取;
选出具有显著前景目标的参考帧,计算参考帧中显著前景目标所占的面积,并将此面积设定为阈值T,遍历所有的视频帧,计算其前景目标所占的面积,通过相减对比,判定显著前景目标。
若判定为显著前景目标则输出其所在视频帧中的帧号,并将显著前景出现的总帧数增加1。
问题五是针对多摄像头多目标的协同跟踪问题。
在问题二的混合高斯模型基础上我们建立了动态背景提取法,对不断变化的背景进行实时更新。
再利用单应性约束法对多目标发生重叠现象进行投影将重叠目标区分开来,对目标进行定位。
由于目标的不断运动,我们采用粒子滤波法对前景目标进行实时跟踪,通过多摄像头的协同通信完成对多前景目标的检测。
问题六是针对监控视频中前景目标出现异常情况时判断能否有异常事件的问题。
在基于稀疏表示的模型上,引入混合高斯模型用于学习不同类型的运动特征规律,然后通过各个单高斯模型中的均值建立一个相似矩阵作为字典。
以测试阶段生成的核矢量为基础,用该局部特征的核矢量计算基于稀疏表示的重构误差,并将其与已设定的阈值进行比较,如果重构误差大于阈值,则判为异常。
2015/11/11 19:17:23 2.62MB MATLAB 目标提取 视频监控 Vibe算法
1
opencvsharp的九点标定,通过迭代修改获取的机械手坐标,优化RMS误差(默认可RMS可精确反应标定关系)来提高标定精度
2022/9/4 0:28:02 19KB opencv 九点标定 C#
1
代码包括遥感影像的单图裁剪、批量裁剪;
训练集、验证集和测试集的切分;
目标检测和语义分割影像的数据增强;
32/16位深度转8位深度。
1、主要用于深度学习领域的遥感影像数据处理,主要针对输入数据为tif,转为jpg、png格式,并将数据裁剪为网络可以训练的大小,可以手动调理裁剪步长(即有重叠或无重叠),可以对单张图像进行裁剪,也可对文件夹内的所有图片进行裁剪。
2、可以根据想要划分的训练集、验证集和测试集的比例进行划分,如9:1:1.3、本代码还提供了用于目标检测和语义分割任务的数据的增强,主要包括仿射变换、平移翻转等。
4、此外,代码还针对遥感影像位深度32或者16的转为8位的操作。
本代码可修改性强,为方便理解,每部分代码都进行的标注。
本文件共包含10个python文件。
2017/6/9 19:21:55 24KB 深度学习 数据处理 遥感影像
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡