利用labview制作的简单最小二乘法求解线性方程工具简单易操作纯软件制作
2024/7/23 1:21:55 78KB labview 最小二乘法
1
【版本说明】1、增加运算符填写功能2、增加进制转换功能(500位数有效)3、增加数据统计功能4、增加运算精度调节(仅针对除法和圆周率的计算)5、增加单位转换功能6、增加输入结果按钮,可将上一次运算结果作为数值输入7、增加线性方程组求解功能8、优化求圆周率的算法,可精确到9000位以上9、修正了之前版本的一些bug10、美化界面【版权说明】未经编写人员许可,任何单位及个人不得以任何方式或理由对该产品进行复制、修改、抄录、传播或与其它产品捆绑使用、销售。
2024/7/22 22:43:07 14.47MB 高精度计算器
1
高校计算方法上机作业之对n阶三对角阵的LU分解及利用其解方程组
1
本人运用C语言编写矩阵的行阶梯,行最简变换,并求对应方程组通解的程序,可实现对任意一个矩阵的行阶梯变换和行最简变换,进而求出矩阵的秩,矩阵所对应的齐次或非齐次线性方程组的通解特解。
输入矩阵规格时,数字之间用*连接,如“3*4”。
1
牛顿迭代法,解非线性方程组求最优解。
2024/7/15 13:10:04 7.85MB 牛顿迭代法 解非线性方程组
1
热力学计算编程软件,数值模拟,方便快捷,解方程非常好用,可用于复杂计算
2024/7/14 7:55:27 7.9MB 热力学工具
1
小学数学方程的意义,小学数学方程的意义课件,小学数学方程的意义PPT
2024/7/12 18:12:11 501KB 小学数学方程的意义
1
牛顿迭代法(Newton'smethod)又称为牛顿-拉夫逊方法(Newton-Raphsonmethod),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。
方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。
牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x)=0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。
设r是f(x)=0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y=f(x)的切线L,L的方程为y=f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标x1=x0-f(x0)/f'(x0),称x1为r的一次近似值。
过点(x1,f(x1))做曲线y=f(x)的切线,并求该切线与x轴的横坐标x2=x1-f(x1)/f'(x1),称x2为r的二次近似值。
重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。
解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。
把f(x)在x0点附近展开成泰勒级数f(x)=f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2!+…取其线性部分,作为非线性方程f(x)=0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0)这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。
2024/7/8 5:37:40 1.13MB 算法
1
C#科学计算讲义-宋叶志-人民邮电出版社内容概要《C#科学计算讲义》较为详细地介绍了科学计算方法,并对算法给出了源代码。
关于算法部分主要介绍了线性方程组的迭代解法与直接解法、正交变换与最小二乘计算方法、鲁棒估计、随机数的产生、插值法、非线性方程求解、多元非线性最优化算法、微分方程数值方法等内容。
本书还给出了C#程序设计的基本方法,并对科学计算中要用到的矩阵向量类的构造做了详细阐述。
算法的实现本身不限于具体的语言,本书对于算法的描述是较为详细的,所以读者也很容易把算法改用Fortran、MATLAB、C++、Java等语言编程实现。
宋叶志、徐导和何峰编著的《C#科学计算讲义》适合作为大学理工科本科生或研究生计算方法、数值分析课程的教材或参考书。
对于从事相关学科教学的教师,如果不熟悉现代编程语言,也可以选择本书作为工具书。
本书还可以用作科研人员的工程计算工具书与算法集。
另外,在一些需要进行数据处理与分析的公司,如数量金融、统计等行业,也可以选用本书作为培训教材,或直接应用书上的源代码进行软件开发。
书籍目录第1章 C#程序设计基础 1.1 计算机、程序设计与算法 1.1.1 计算机结构 1.1.2 操作系统 1.1.3 机器语言与高级语言 1.1.4 程序设计与算法 1.2 C#历史与概述 1.2.1 C语言:结构化编程语言的高峰 1.2.2 C++语言: 面向对象与大型程序 1.2.3 Java语言:可移植、安全性与Internet 1.2.4 C#:.NET主打语言 1.3 集成开发环境介绍 1.4 面向对象程序设计 1.4.1 封装 1.4.2 多态 1.4.3 继承 1.5 数据类型与运算符 1.5.1 简单数据类型 1.5.2 数组 1.5.3 运算符 1.5.4 赋值运算符 1.6 程序控制结构 1.6.1 顺序结构 1.6.2 分支结构 1.6.3 循环结构 1.6.4 控制结构的嵌套 1.7 类的设计及对象实现 1.7.1 定义类 1.7.2 创建对象 1.7.3 方法 1.7.4 构造函数 1.7.5 析构函数与垃圾回收 1.8 运算符重载及索引器 1.8.1 运算符重载 1.8.2 索引器 1.8.3 面向对象思想在C#程序设计中的重要性 1.9 GUI编程 1.10 本章小结第2章 线性方程组迭代解法 第3章 线性方程组的直接解法第4章 正交变换与最小二乘计算方法第5章 鲁棒估计第6章 随机数第7章 插值法第8章 非线性方程数值解法第9章 非线性最优化第10章 常微分方程(组)的数值方法附录A C# 数值代数类的抽象与设计 附录B 动态链接库与混合编程 B.1 静态链接库与动态链接库 B.2 C#调用Fortran动态链接库范例 B.3 调用可执行函数 附录C Linux下C#开发与跨平台编程介绍 C.1 Mono简介 C.2 Linux下C#IDE开发范例 参考文献 
2024/6/30 17:14:25 57.93MB C# 科学计算 宋叶志 人民邮电
1
GPC算法中可以调用的多步丢番图方程求解仿真程序源码
2024/6/27 7:21:01 892B diophantine
1
共 788 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡