板材切割优化体系适用于法则的木板切割、玻璃切割、钢板切割等优化方案,付与优化算法,增强了板材排版的迷信性以及正当性。
体系实现为了方案与管理实用的松散,您能够依据多种制品尺寸与多种毛坯相松散盘算出公平的排版方案,能够实现零料的二次使用。
优化功能高。
留存、可转让化种种情景下运行的报表。
该版本的玻璃优化盘算除了具备老例体系的成果外,还削减或者增强了一下成果:一、付与新的优化算法。
本体系的这次降级付与愈加先进的多种数学实际以及盘算机数据结构实际,比力大的普及了板材排布的正当性。
优化率比降级前的体系普及的5%以上。
二、付与公役方式。
思考到门窗玻璃的切割有未必的倾向申请,在制品玻璃的切割时能够应承未必的倾向值,故在优化盘算以前能够举行制品玻璃正负倾向的配置。
对于降级前的体系,假如在玻璃毛坯上切割的蛮后一张玻璃制品尺寸偏大1-3毫米,频频要在一张新的玻璃毛坯上举行切割,组成糜掷,而普通的降级体系,就能够依据实际情景,定义公役值,从而普及行使率。
2023/5/1 7:08:18 5.41MB 极致 玻璃开料 板材开料 切割优化
1
语音端点检测是语音信号处置进程中的一个弥留步骤,其检测准确性直接影响语音信号处置的速率以及下场。
传统的基于双门限法语言检测本领,在语音处于纯语音情景下分辨语音端点较准确,但在语音处于噪声情景下,特意是低信噪比的情景下,端点识别率很低,侵蚀率很高。
基于普及此方式识别率的目的,付与调解阈值个数,滑腻滤波,引入语音竣事最小长度的方式对于其举行改善,经由了Matlab仿其实验,患上出了较好的语音端点检测准确率。
1
Maven+Spring+SpringMVC+MyBatis+MySQL,搭建SSM框架情景,详尽查验博客
2023/5/1 5:07:37 36KB SSM
1
这是新浪微博爬虫,付与python+selenium实现。
免费资源,阻滞对于你有所帮手,当然是傻瓜式爬虫,然则起码能运行。
同时rar中搜罗源码及爬取的示例。
参考我的文章:http://blog.csdn.net/eastmount/article/details/50720436[python爬虫]Selenium爬取新浪微博内容及用户信息http://blog.csdn.net/eastmount/article/details/51231852[Python爬虫]Selenium爬取新浪微博客户端用户信息、热门话题及品评(上)首要爬取内容搜罗:新浪微博手机端用户信息以及微博信息。
用户信息:搜罗用户ID、用户名、微博数、粉丝数、存眷数等。
微博信息:搜罗转发或者原创、点赞数、转发数、品评数、宣告功夫、微博内容等。
装置进程:1.先装置Python情景,作者是Python2.7.82.再装置PIP大概easy_install3.经由召唤pipinstallselenium装置selenium,它是自动测试、爬虫的货物4.而后更正代码中的用户名以及密码
2023/5/1 5:17:57 111KB 源码
1
如题,DriveFitnessTestv4.16绿色硬盘版,直接解收缩到C盘,重启电脑就可使用。
制作这个版本的原因是:官网上下载的DFT需要软驱大概光驱才气使用,不是很便捷。
DriveFitnessTestv4.16绿色硬盘版使用:装置DOS到C盘;
解收缩到硬盘(C盘),重启电脑就可。
DFT的使用方式:1,启动电脑,进入DFTutilities界面中。
2,在DFT所显展现的两个选项:1.SCSIandATAsupport2.ATAsupportonly铛铛遴选"2.ATAsupportonly"。
3,选定您需要举行DFT测试的硬盘。
若遴选操作窗口中的QuickTest是随机遴选硬盘中多少个扇区举行测试,耗时较短。
4,若遴选AdvancedTest则是对于硬盘举行片面检测。
在检测实现后,DFT将会报告响应的检测代码(DFTErrorCode),假如检测代码为:0X00,则展现硬盘不任何下场。
假如是0X00之外的,请再联系日立的反对于中间并提供响应的测试下场来举行缺陷阐发。
5,运行Uilities菜单中的EraseDisk/EraseBootSector/SectorRepair能够修复一些坏道的情景。
如在运行了EraseBootSector后再运行EraseDisk就可实现硬盘的低级格式化。
咱们建议您在检测及低格您的硬盘前,先将您的弥留数据做好备份。
注:假如测试代码是0x70,则展现硬盘中被查出含有坏道。
请实施货物栏Utilities菜单下的"EraseDisk"对于磁盘举行清零来实现逻辑坏道修复。
EraseDisk操作实现之后,您可再运行一次AdvancedTest来未必硬盘中的逻辑坏道能否已经被删除了。
假如二次测试代码为0x00,展现坏道已经消除了,您可络续普通使用硬盘。
假如二次测试代码照常为0x70或者0x75,则展现该硬盘已经破损,已经不软件修复的大概性。
*假如先实施Utilities菜单下的"EraseBootSector"再实施对于立菜单下的"EraseDisk"能够对于硬盘举行低级格式化。
**假如您的硬盘中存有弥留数据,请不要实施"EraseBootSector"或者"EraseDisk"操作。
2023/5/1 5:39:56 781KB DFT
1
在NTFS文件体系中,每一个文件或者目录都具备一个MFT记实,MFT记实中记实了文件或者目录的底子信息,对于普通文件来说,普通具备文件序号,文件名,建树功夫,文件大小,文件属性,文件数据地址索引等底子文件信息,而一个目录除了具备底子文件信息,还具备其目录下的文件索引项信息,文件与其父目录之间经由该文件的MFT记实中的父目录信息以及目录中的索引项来建树附属关连,这两种信息仅有地未必了文件与父目录之间的对于应关连,由此可知,要在一个指定目录下天生一个文件,除了要建树目的文件自身的MFT记实,还需在其父目录的MFT记实大概其索引调配中建树目的文件的索引。
在NTFS体系中,文件索引是一个比力繁杂的内容,文件的索引付与了树型结构,这给NTFS体系带来了查找文件速率快的短处,但却给当索引结点削减或者削减时,若何掩护树的失调带来了难题。
在NTFS体系中,小目录的索引直接寄存在目录自身MFT记实的90H属性中,而大目录的索引则需另外开拓新的索引调配区来寄存相关的索引。
原法度圭表标准中只思考了小目录的情景,行将文件的索引直接寄存在90H属性中,并不思考大目录的索引情景。
除了此之外,NTFS体系对于每一个文件操作都市写入日志文件中,以便不合性查验,但由于这方面的内容尚未钻研明晰,本法度圭表标准中也未波及这方面的内容。
2023/5/1 0:54:39 424KB ntfs 文件系统 Hexshop
1
行使所建模子,仿真阐发了机车在不合功率、不合电压下的谐波特色。
患上悉机车谐波电流漫衍趋向不随功率变更,但机车功率越低谐波水平越高,且同样功率情景下再生制落成况的谐波水平略高于牵引工况;机车谐波电流随机车电压明晰变更,但漫衍趋向约莫同样,两倍开关频率左近的谐波及高次谐波随电压削减而削减,低次谐波变更趋向不用定。
2023/5/1 0:27:49 7.42MB 牵引供电系统;潮流算法
1
用DDraw实现射击游戏阐发文档要点一:画图自动切割IDirectDrawSurface7::BltFast()方式中不自动切割成果,即当画图元素逾越窗口之外时不会自动切割,DDraw遴选自动漠视不画,组成一旦逾越窗口,画图元素会忽然磨灭。
处置这一下场的方式是手动切割,代码如下://自动切割 RECTscRect; //寄存之后窗口大小地域 ZeroMemory(&scRect,sizeof(scRect)); GetWindowRect(GetActiveWindow(),&scRect); //提防图片左上角逾越窗口左上角 if(xscRect.right?scRect.right:x; y=y>scRect.bottom?scRect.bottom:y; m_rect.right=x+m_rect.right-m_rect.left>scRect.right?scRect.right-x+m_rect.left:m_rect.right; m_rect.bottom=y+m_rect.bottom-m_rect.top>scRect.bottom?scRect.bottom-y+m_rect.top:m_rect.bottom;惟独将上述代码加在CGraphic::BltBBuffer()中的m_bRect=m_rect;前就可。
要点二:配景的滚轴实现 画配景能够分为如下三种情景: 情景一:配景图片与窗口等高 情景二:配景图片高度小于窗口高度 情景三:配景图片高度大于窗口高度上述教学图与代码相对于应地看,有助于约莫知道。
另外,要点一实现之后,由于已经能够自动切割,画配景能够用另外方式。
要点三:精灵图的实普通游戏中,如RPG游戏中的人物图、射击类游戏的飞机、爆炸等,叫做精灵图。
精灵图实际上是将齐全帧的图片放在一个文件中,游戏时靠一个RECT来抑制画图像文件中的哪一部份,进而抑制游戏展现哪一帧图,惟独抑制好RECT的位置就可。
如下图:抑制RECT的四个角的坐标的挪动,有如下代码:if(m_timeEnd–m_timeStart>100) //惟独到了100ms之后才画图 {m_ImageID++; if(m_ImageID-m_beginID>=num) { m_ImageID=m_beginID; //末了一帧的下一帧是第一帧 } m_timeStart=timeGetTime(); } intid=m_ImageID++; SetRect(&m_rect,41*id,0,41*(id+1),41); //飞机精灵图大小是41×41 m_pGraph->BltBBuffer(m_pImageBuffer,true,m_Pos.x,m_Pos.y,m_rect);如许就实现为了精敏捷画的下场。
要点四:拿STL举行枪弹的实现枪弹的实现能够使用STL中的vector,当按下开战键时收回一颗枪弹,就往vector中削减一个结点;
当枪弹飞出窗口或者击中敌机时,再将结点从vector中删除了。
每一帧游戏画面中枪弹翱翔时惟独将vector中的齐全枪弹举行处置、绘画就可。
参考代码如下:1.削减枪弹if(g_ctrlDown) //当ctrl键按下时开炮! { m_BulletEnd=m_Gtime->GetTime(); if((m_BulletEnd-m_BulletStart)*1000>120) //假如络续按着开战键不放,这里抑制不会收回太多枪弹 { m_BulletStart=m_BulletEnd; MBULLETtmpBullet; tmpBullet.pos.x=m_SPos.x-1; //记实开战时的枪弹位置 tmpBullet.pos.y=m_SPos.y-26; tmpBullet.speed=5; //该枪弹的翱翔速率 m_BulletList.push_back(tmpBullet); //将枪弹削减到vector中 } } 2.删除了枪弹vector::iteratoritei; //vector迭代器 for(itei=m_BulletList.begin();itei!=m_BulletList.end();itei++) //遍历齐全枪弹{m_BulletList.erase(itei); //删除了这个枪弹itei=m_BulletList.begin(); //删除了一个结点后,为防止侵蚀下次就重新查验if(m_BulletList.empty()) break; //若删除了结点后枪弹vector已经空则跳出轮回} 3.枪弹遍历处置vector::iteratoritei; //vector迭代器 for(itei=m_BulletList.begin();itei!=m_BulletList.end();itei++) //遍历齐全枪弹{itei->pos.y-=itei->speed; //枪弹翱翔}要点五:碰撞检测使用WindowsAPI函数RectInRegion:vector::iteratoritei; //vector迭代器for(itei=m_EnimyList.begin();itei!=m_EnimyList.end();itei++) //遍历齐全敌机{HRGNhrgn=::CreateRectRgn(m_player->pos.x,m_player->pos.y,m_player->pos.x+41,m_player->pos.y+41); //患上到飞机Region,图宽41高41 SetRect(&m_rect,itej->getPosition().x,itej->getPosition().y,itej->getPosition().x+50,itej->getPosition().y+50) //患上到敌机rect,敌机宽50高50 if(RectInRegion(hrgn,&m_rect)) //两机相撞 { ……………………. //碰撞之后的种种处置 }}让碰撞愈加准确:使用WindowsAPI函数PtInRegion()以及CreatePolygonRgn(),选取配角飞机的三个关键点的坐标放在POINT数组中,并将其作为参数代入CreatePolygonRgn()中天生HRGN,在枪弹与配角飞机做碰撞检测时惟独分辨枪弹的中间点能否在这个Region中就可(PtInRegion())。
留意:CreateRectRgn()与CreatePolygonRgn()等建树Region的函数会占用体系资源,由于游戏的主渲染函数Render()是络续实施的,如许会组成资源糜掷,于是在用完之后未必要释放:DeleteObject(region)要点六:敌机直线翱翔末了想这个下场的时候,感应很好实现,脑子里马上想到以及了。
其实如许实现有下场,当尽头以及尽头的连线斜率不是1或者-1时就会涌现意想不到的责任了,飞机并无直接飞向尽头,而因此斜率相对于值为1的路途飞已经往,再水平或者垂直飞向尽头。
处置这个下场有多少个方式,其中有一个方式是行使盘算机图形学上的Bresenhem直线算法。
该算法用于盘算机画平面上的直线,算法如下:|m|abs(deltaY))//轨迹斜率0)//1 { if(m_bFirstCalculate) { m_Delta=2*abs(deltaX)-abs(deltaY);//d0=2×dx-dy m_bFirstCalculate=false; } //依据轨迹斜率分辨能否要挪动X坐标 if(m_Delta>0)//m_iTempo)break;}//endofwhile(*pStr)
2023/5/1 0:27:02 2.18MB DDraw
1
MySQL是一种关连数据库管理体系,关连数据库将数据留存在不合的表中,而不是将齐全部据放在一个大堆栈内,如许就削减了速率并普及了敏捷性。
MySQL所使用的SQL语言是用于晤面数据库的最罕用尺度化语言。
这款MySQL软件是企业版,其体积小、速率快、总体具备资源低,搭配PHP以及Apache可组成精采的开拓情景。
2023/4/30 23:53:11 40MB MySQL
1
本工程是STM32F103操作红外温度传感器MLX90614,SMBUS付与IO模拟方式,将下场打印进去。
编译情景是KeilMDK
2023/4/30 11:07:17 7.67MB STM32 红外温度 MLX90614 温度传感器
1
共 639 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡