《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
《模式识别(第四版)》是2010年电子工业出版社出版的图书,作者是西奥多里蒂斯。
本书由模式识别领域的两位顶级专家合著,全面阐述了模式识别的基础理论、最新方法、以及各种应用。
作 者:(希)SergiosTheodoridis/(希)KonstantinosKoutroumbas,李晶皎等译第1章导论1.1模式识别的重要性1.2特征、特征向量和分类器1.3有监督、无监督和半监督学习1.4MATLAB程序1.5本书的内容安排第2章基于贝叶斯决策理论的分类器2.1引言2.2贝叶斯决策理论2.3判别函数和决策面2.4正态分布的贝叶斯分类2.5未知概率密度函数的估计2.6最近邻规则2.7贝叶斯网络习题MATLAB编程和练习参考文献第3章线性分类器3.1引言3.2线性判别函数和决策超平面3.3感知器算法3.4最小二乘法3.5均方估计的回顾3.6逻辑识别3.7支持向量机习题MATLAB编程和练习参考文献第4章非线性分类器4.1引言4.2异或问题4.3两层感知器4.4三层感知器4.5基于训练集准确分类的算法4.6反向传播算法4.7反向传播算法的改进4.8代价函数选择4.9神经网络大小的选择4.10仿真实例4.11具有权值共享的网络4.12线性分类器的推广4.13线性二分法中1维空间的容量4.14多项式分类器4.15径向基函数网络4.16通用逼近4.17概率神经元网络4.18支持向量机:非线性格况4.19超越SVM的范例4.20决策树4.21合并分类器4.22合并分类器的增强法4.23类的不平衡问题4.24讨论习题MATLAB编程和练习参考文献第5章特征选择5.1引言5.2预处理5.3峰值现象5.4基于统计假设检验的特征选择5.5接收机操作特性(ROC)曲线5.6类可分性测量5.7特征子集的选择5.8最优特征生成5.9神经网络和特征生成/选择5.10推广理论的提示5.11贝叶斯信息准则习题MATLAB编程和练习参考文献第6章特征生成I:线性变换6.1引言6.2基本向量和图像6.3Karhunen-Loève变换6.4奇异值分解6.5独立成分分析6.6非负矩阵因子分解6.7非线性维数降低6.8离散傅里叶变换(DFT)6.9离散正弦和余弦变换6.10Hadamard变换6.11Haar变换6.12回顾Haar展开式6.13离散时间小波变换(DTWT)6.14多分辨解释6.15小波包6.16二维推广简介6.17应用习题MATLAB编程和练习参考文献第7章特征生成II7.1引言7.2区域特征7.3字符形状和大小的特征7.4分形概述7.5语音和声音分类的典型特征习题MATLAB编程和练习参考文献第8章模板匹配8.1引言8.2基于最优路径搜索技术的测度8.3基于相关的测度8.4可变形的模板模型8.5基于内容的信息检索:相关反馈习题MATLAB编程和练习参考文献第9章上下文相关分类9.1引言9.2贝叶斯分类器9.3马尔可夫链模型9.4Viterbi算法9.5信道均衡9.6隐马尔可夫模型9.7状态驻留的HMM9.8用神经网络训练马尔可夫模型9.9马尔可夫随机场的讨论习题MATLAB编程和练习参考文献第10章监督学习:尾声10.1引言10.2误差计算方法10.3探讨有限数据集的大小10.4医学图像实例研究10.5半监督学习习题参考文献第11章聚类:基本概念11.1引言11.2近邻测度习题参考文献第12章聚类算法I:顺序算法12.1引言12.2聚类算法的种类12.3顺序聚类算法12.4BSAS的改进12.5两个阈值的顺序方法12.6改进阶段12.7神经网络的实现习题MATLAB编程和练习参考文献第13章聚类算法II:层次算法13.1引言13.2合并算法13.3cophenetic矩阵13.4分裂算法13.5用于大数据集的层次算法13.6最佳聚类数的选择习题MATLAB编程和练习参考文献第14章聚类算法III:基于函数最优方法14.1引言14.2混合分解方法14.3模糊聚类算法14.4可能性聚类14.5硬聚类算法14.6向量量化附录习题MATLAB编程和练习参考文献第15
2016/1/18 19:48:46 95.69MB 模式识别
1
识别结果大概是这样{'result':{'face_num':1,'face_list':[{'quality':{'occlusion':{'right_eye':0,'left_cheek':0.1459853947,'right_cheek':0.05144193396,'left_eye':0.465408802,'mouth':0.02919708006,'chin_contour':0.01420217194,'nose':0},'illumination':116,'blur':7.266304692e-06,'completeness':1},'age':22,'face_token':'dc6f8f9df5d977ea476e2d04acdf5063','race':{'type':'white','probability':0.6173604727},'glasses':{'type':'common','probability':0.9834988713},'gender':{'type':'male','probability':0.655915916},'face_probability':0.9185044169,'beauty':51.21487427,'angle':{'roll':-2.750922441,'yaw':28.97134399,'pitch':5.202290535},'location':{'height':65,'top':112.0704803,'width':76,'left':76.20765686,'rotation':-4},'face_type':{'type':'human','probability':0.9992217422},'face_shape':{'type':'oval','probability':0.4419156313},'expression':{'type':'none','probability':0.9999142885}}]},'error_msg':'SUCCESS','timestamp':1537413754,'cached':0,'error_code':0,'log_id':9465840013520}年龄:22颜值:51.21487427表情-type(none:不笑;
smile:微笑;
laugh:大笑):none表情-probability(表情置信度,范围【0~1】,0最小、1最大):0.9999142885脸型-type(square:正方形triangle:三角形oval:椭圆heart:心形round:圆形):oval脸型-probability(置信度,范围【0~1】,代表这是人脸形状判断正确的概率,0最小、1最大):0.4419156313性别-type(male:男性female:女性):male性别-probability(性别置信度,范围【0~1】,0代表概率最小、1代表最大。
):0.655915916能否带眼镜-type(none:无眼镜,common:普通眼镜,sun:墨镜):common能否带眼镜-probability(眼镜置信度,范围【0~1】,0代表概率最小、1代表最大。
):0.9834988713人种-type(yellow:黄种人white:白种人black:黑种人arabs:阿拉伯人):white人种-probability(人种置信度,范围【0~1】,0代表概率最小、1代表最大。
):0.6173604727真实人脸/卡通人脸-type(human:真实人脸cartoon:卡通人脸):human真实人脸/卡通人脸-probability(人脸类型判断正确的置信度,范围【0~1】,0代表概率最小、1代表最大。
):0.9992217422
2015/7/3 8:12:32 3KB python3.5 百度ai 人脸识别
1
形状学去噪算法,主要是通过腐蚀和膨胀来实现去噪
2019/9/11 15:37:55 331B 形态学 去噪算法 代码
1
SSAM可以做交通安全相关的分析,与vissim软件生成的车辆轨迹文件可进行分析,判断交通安全态势和预估可能发生的事故形状和严重程度。
2021/7/13 15:12:26 29.27MB 交通安全 工具软件
1
最近在研究数学形状学做了一个细化的例子,并附上测试图像。
前景为白色,背景为黑色。
算法未经优化,而且是迭代计算,效率不高,但能充分体现细化的思路,有注释。
清单:test_03.mxihua_1.mxihua_2.mxihua_3.mxihua_4.mtest_20.bmp直接运行test_03.m,得到细化结果
2016/3/9 4:37:54 11KB 细化 matlab
1
【作 者】田瑞峰,刘平安主编;
霍岩,李树声,邹高万副主编;
王革主审【丛书名】工业和信息化部“十二五”规划教材【形状项】452【出版项】哈尔滨:哈尔滨工程大学出版社,2015.08【ISBN号】978-7-5661-1104-3【中图法分类号】TK124;O351.2【原书定价】65.00【主题词】流体流动-数值计算-传热学【参考文献格式】田瑞峰,刘平安主编;
霍岩,李树声,邹高万副主编;
王革主审.传热与流体流动的数值计算.哈尔滨:哈尔滨工程大学出版社,2015.08.内容提要:本书介绍了传热和流体流动素质计算中最常用的有限体积法和有限差分法,具体内容包括描述传热和流体流动问题的基本控制方程组,控制方程的通用形式及其分类;
有限体积法离散控制方程,压力修正算法对控制方程组求解顺序特殊的处理,离散后得到的代数方程的求解。
2021/3/11 19:03:47 76.8MB 数值计算
1
基于形状重构的改进图像分割方法
2020/8/1 23:24:48 87KB 研究论文
1
应用matlab检测物体边缘、经形状学处理,最后标记出物体
2019/7/19 7:31:30 516B matlab 边缘检测 形态学
1
应用matlab检测物体边缘、经形状学处理,最后标记出物体
2021/8/15 16:16:31 516B matlab 边缘检测 形态学
1
共 242 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡