本书介绍正交频分复用(OFDM)技术的原理及其在无线通信领域内的应用。
全书共分10章。
第1章简要介绍无线通信系统的发展历程以及无线衰落信道的基本特性;
第2章介绍OFDM技术的基本原理与特性;
第3章叙述了OFDM技术内峰值平均功率比的问题,并且讨论若干抑制过高峰均比的方法;
第4章详细介绍OFDM技术内非常关键的同步问题;
第5章介绍OFDM技术内的信道估计;
第6章针对动态功率、比特分配在OFDM系统内的灵活应用进行讨论;
第7章介绍各种编码在OFDM技术内的应用,并且讨论最新的编码方法;
第8章分析多种不同的多址方案与OFDM技术的结合;
第9章详细介绍OFDM在多个领域内的应用,其中包括DAB、DVB、WLAN和ADSL等;
最后第10章简单介绍未来移动通信系统(NextG)的关键概念,以及适于传输高速数据流的MIMOOFDM系统。
  本书可作为通信工程技术人员和通信专业的本科生、研究生的参考书。
2024/7/15 20:10:04 14.49MB OFDM移动通信技术原理与应用 经典
1
skpr:生成并评估D,I,A,Alias,E,T,G和自定义最佳设计。
支持生成和评估混合和分割-分割-N-分割图设计。
包括参数和蒙特卡洛功率评估功能。
提供使用其他软件包提供的功能或用户编写的功能来评估功能的框架
2024/7/15 13:19:36 2.28MB r monte-carlo linear-regression power
1
对一个具有高连续流动速率的纵向放电CO激光器作了实验和理论的研究。
实验中,对富含氦的混合物获得了下列输出参量:比输出能量550焦耳/克,效率30%,小信号增益2米-1,连续输出功率700瓦。
在用氩代替氮的混合物中,观察到有20%效率的激射作用。
为CO激光器提供的计算模型与实验有令人满意的符合。
2024/7/15 4:43:34 1.8MB
1
到2018年,普通发光二极管(LED)的普及率将达到80%。
基于LED的可见光通信(VLC)技术有望为高速VLC的实现提供新方案。
国内外研究者们分别对先进调制、编码/均衡、复用技术及材料/芯片等进行了研究,以扩展调制带宽、提高传输速率和增加传输距离。
对载波幅相调制、自适应比特功率加载的正交频分复用调制、硬件/软件预均衡、后均衡等技术以及新型光学材料的原理和性能等国际研究热点进行了分析与讨论,对最新的研究进展进行了总结,从而为未来VLC的研究提供一定的参考。
2024/7/14 9:36:12 13.48MB 光通信 高速可见 发光二极 先进调制
1
要求设计制作一个高保真音频功率放大器,输出功率10W/8Ω,频率响应20~20KHZ,效率>60﹪,失真小。
音频放大器的目的是以要求的音量和功率水平在发声输出元件上重新产生真实、高效和低失真的输入音频信号。
音频频率范围约为20Hz~20kHz,因此放大器必须在此频率范围内具有良好的频率响应。
2024/7/7 10:47:23 280KB 模拟电子课程设计
1
大功率壁挂式风光互补控制器,与原理图一起可以直接出产品!
2024/7/6 1:37:53 326KB 风光互补
1
贴片功率电感的PCB封装,AD14,SMDRH63,73,105,127
2024/7/6 0:11:52 11KB 贴片功率电感 PCB封装 AD14
1
报道了444nm蓝光激光二极管抽运的掺镨氟化锂钆(Pr3+:GdLiF4)固体红光激光器。
实验采用掺杂粒子数分数为1.01%的Pr3+:GdLiF4晶体,样本沿a切方向,尺寸大小为2.7mm×2mm×4mm(a×c×a),在激光二极管抽运下通过设计的平凹腔获得了波长为639.3nm的连续红光输出。
通过多次优化,当抽运光输入功率为3W,输出镜透射率为3%时,获得了最大输出功率153mW,其斜率效率约为6.78%,抽运阈值达到750mW。
2024/7/2 11:20:11 1.19MB 激光器 红光激光 固体激光 掺镨氟化
1
摘要:介绍了一种正弦波功率信号源电路,该电路用高速双路PWM控制器UC3825为控制芯片,功率MOSFET为开关器件而构成的推挽逆变器,逆变器输出经高频LC滤波后输出1MHz/100W正弦波功率信号。
实验证明电路产生的波形质量好,电路结构简单,控制方便,并具有体积小,效率高的特点。
关键词:功率信号源;
推挽;
脉宽调制;
变换器1引言低频小功率信号源往往用线性功率放大电路,其电路比较简单,波形质量好,易于实现。
而对于高频、中大功率信号源用线性功率放大电路难以实现,特别是对于要求1MHz/100W正弦波功率信号源,采用线性功率放大电路,其电路结构复杂,调整困难,不易实现。
而采用高速双路PWM控制器UC
2024/7/2 9:06:05 125KB
1
光伏最大功率点追踪Matlab程序
712B matlab
1
共 757 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡