该代码使用Tensorflowr1.7在Ubuntu14.04下使用Python2.7和Python3.5进行测试。
代码中包含测试用例。
模型使用固定图像标准化。
在中科院自动化所,WebFace数据集已经被用于训练。
该面部检测后,该训练集包括总共453453个图像,超过10575个身份。
如果在训练之前过滤了数据集,则可以看到一些性能改进。
有关如何完成此操作的更多信息将在稍后提供。
性能最佳的模型已经在VGGFace2数据集上进行了训练,该数据集由~3.3M面和~9000个类组成。
提供了几个预训练模型。
请注意,模型的输入图像需要使用固定图像标准化进行标准化(--use_fixed_image_standardization例如,在运行时使用该选项validate_on_lfw.py)。
1
OpenGL使用画家算法实现隐藏面的消除的旋转正方体
2024/1/31 4:45:39 3.81MB OpenGL 画家算法 旋转正方体
1
中兴通信面试题笔试题中兴通信面试题笔试题中兴通信面试题笔试题中兴通信面试题笔试题
2024/1/27 10:45:44 34KB 中兴 通信 面试题 笔试题
1
项目篇很重要,基本面试的第一个环节都是扣你的项目。
项目一定要准备1到2个亮点(难点)!!!项目一定要准备1到2个亮点(难点)!!!项目一定要准备1到2个亮点(难点)!!!有些人看到这里就会说,我这项目水的一批,一点亮点都没有,咋整,全完了呀,别慌,听我给你吹一波。
一开始我第一次面试的时候(第一次就去面阿里,我也是胆贼大),阿里面试官上来就怼项目,问我这是啥,那是啥,我说了以后,他就问着玩意底层是咋实现的,我用的是一个开源的爬虫,然后我就说我只会用,底层没有看过,他估计很失望;
然后他问我的项目亮点是啥,我当时一下愣住了,扯了一些有的没的,都是失败的惨痛的教训,大家参考参考就好,不一定就一定要照着我学,非要知耻而后勇,咋提前准备好也是不错的。
经过这次惨痛的教训以后,我就开始有意识地去想一些项目的亮点,即使不是我遇到的问题,我强行把这些问题加到我的项目上面,当做我的项目亮点。
2024/1/26 9:42:08 24.03MB java 乔戈里 面经
1
密实砂土地层盾构隧道开挖面失稳离心模型试验研究_汤旅军.caj
2024/1/26 7:32:15 1.09MB 盾构隧道开挖
1
SAR面目标的回波仿真利用matlab有效仿真出平顶楼三角锥等立体目标的回波仿真
2024/1/24 15:08:10 2.2MB SAR 面目标 回波仿真 matlab
1
将六个面的九个颜色,一共54个颜色按照标准座位输入,一键式导出步骤,支持单独运行,也可以自己程序调用,比如matlab颜色识别,之后就可以调用此程序进行解魔方。
2024/1/23 16:06:14 2.05MB 魔方 解魔方 解魔方程序
1
3GPP长期演进(LTE)技术原理与系统设计.pdf添加了完整的书签支持跳转方便阅读比csdn上提供的带书签的这个版本清晰封面1序言4前言6目录8第1章 背景与概述141.1 什么是LTE141.2 LTE项目启动的背景151.2.1 移动通信与宽带无线接入技术的融合151.2.2 国际宽带移动通信研究和标准化工作161.2.3 我国宽带移动通信研究工作181.3 3GPP简介181.3.1 3GPP的组织结构191.3.2 3GPP的工作方法201.3.3 3GPP技术规范的版本划分211.4 LTE研究和标准化工作进程251.4.1 LTE项目的时间进度251.4.2 LTE协议结构271.5 LTE技术特点291.5.1 LTE需求291.5.2 系统架构301.5.3 空中接口311.5.4 移动性和无线资源管理361.5.5 自配置与自优化371.5.6 和LTE相关的其他3GPP演进项目371.6 LTE和其他宽带移动通信技术的对比401.6.1 性能指标对比401.6.2 关键技术对比421.7 小结44参考文献44第2章 LTE需求452.1 系统容量需求462.1.1 峰值速率462.1.2 系统延迟462.2 系统性能需求472.2.1 用户吞吐量与控制面容量472.2.2 频谱效率482.2.3 移动性492.2.4 覆盖492.2.5 进一步增强的MBMS492.2.6 网络同步502.3 系统部署需求512.3.1 部署场景512.3.2 频谱扩展性512.3.3 部署频谱512.3.4 与其他3GPP系统的共存和互操作522.4 对无线接入网框架和演进的要求522.5 无线资源管理需求532.6 复杂度要求532.6.1 系统复杂度532.6.2 UE复杂度532.7 成本要求542.8 业务需求542.9 小结54参考文献55第3章 LTE物理层协议563.1 物理层概述563.1.1 协议结构563.1.2 物理层功能573.1.3 LTE物理层协议概要介绍573.2 物理信道与调制593.2.1 帧结构593.2.2 上行物理信道613.2.3 下行物理信道773.2.4 伪随机序列产生1023.2.5 定时1023.3 复用与信道编码1023.3.1 物理信道映射1023.3.2 信道编码和交织1033.4 物理层过程1243.4.1 同步过程1243.4.2 功率控制1243.4.3 随机接入过程1273.4.4 PDSCH相关过程1273.4.5 PUSCH相关过程1313.4.6 PDCCH相关过程1333.4.7 PUCCH相关过程1333.5 物理层测量1343.5.1 UE/E-UTRAN测量概述1343.5.2 UE/E-UTRAN测量能力134参考文献136第4章 LTE无线传输技术1384.1 双工方式1384.1.1 FDD双工方式1384.1.2 TDD双工方式1384.1.3 H-FDD双工方式1394.2 宏分集的取舍1404.2.1 宏分集技术在WCDMA中的应用情况1414.2.2 LTE系统对宏分集的取舍1424.3 下行多址技术1434.3.1 OFDMA技术方案1434.3.2 VSF-OFDM技术方案1484.3.3 OFDM/OQAM技术方案1514.3.4 多载波WCDMA(MC-WCDMA)技术方案1534.3.5 多载波TD-SCDMA(MC-TD-SCDMA)技术方案1564.3.6 下行多址技术的确定1564.4 上行多址技术1564.4.1 PAPR和立方量度(CubicMetric,CM)问题1574.4.2 采用PAPR降低的OFDMA(OFDMAwithPAPRReduction)技术方案1584.4.3 单载波频分多址(SC-FDMA)技术方案1604.4.4 单载波和频域均衡(SC-FDE)技术方案1614.
2024/1/23 9:26:20 42.69MB 3GPP长期演进 LTE 书签
1
共 813 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡