【目录】-MATLAB神经网络30个案例分析(开发实例系列图书)第1章BP神经网络的数据分类——语音特征信号分类1本案例选取了民歌、古筝、摇滚和流行四类不同音乐,用BP神经网络实现对这四类音乐的有效分类。
第2章BP神经网络的非线性系统建模——非线性函数拟合11本章拟合的非线性函数为y=x21+x22。
第3章遗传算法优化BP神经网络——非线性函数拟合21根据遗传算法和BP神经网络理论,在MATLAB软件中编程实现基于遗传算法优化的BP神经网络非线性系统拟合算法。
第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优36对于未知的非线性函数,仅通过函数的输入输出数据难以准确寻找函数极值。
这类问题可以通过神经网络结合遗传算法求解,利用神经网络的非线性拟合能力和遗传算法的非线性寻优能力寻找函数极值。
第5章基于BP_Adaboost的强分类器设计——公司财务预警建模45BP_Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。
第6章PID神经元网络解耦控制算法——多变量系统控制54根据PID神经元网络控制器原理,在MATLAB中编程实现PID神经元网络控制多变量耦合系统。
第7章RBF网络的回归——非线性函数回归的实现65本例用RBF网络拟合未知函数,预先设定一个非线性函数,如式y=20+x21-10cos(2πx1)+x22-10cos(2πx2)所示,假定函数解析式不清楚的情况下,随机产生x1,x2和由这两个变量按上式得出的y。
将x1,x2作为RBF网络的输入数据,将y作为RBF网络的输出数据,分别建立近似和精确RBF网络进行回归分析,并评价网络拟合效果。
第8章GRNN的数据预测——基于广义回归神经网络的货运量预测73根据货运量影响因素的分析,分别取国内生产总值(GDP),工业总产值,铁路运输线路长度,复线里程比重,公路运输线路长度,等级公路比重,铁路货车数量和民用载货汽车数量8项指标因素作为网络输入,以货运总量,铁路货运量和公路货运量3项指标因素作为网络输出,构建GRNN,由于训练数据较少,采取交叉验证方法训练GRNN神经网络,并用循环找出最佳的SPREAD。
第9章离散Hopfield神经网络的联想记忆——数字识别81根据Hopfield神经网络相关知识,设计一个具有联想记忆功能的离散型Hopfield神经网络。
要求该网络可以正确地识别0~9这10个数字,当数字被一定的噪声干扰后,仍具有较好的识别效果。
第10章离散Hopfield神经网络的分类——高校科研能力评价90某机构对20所高校的科研能力进行了调研和评价,试根据调研结果中较为重要的11个评价指标的数据,并结合离散Hopfield神经网络的联想记忆能力,建立离散Hopfield高校科研能力评价模型。
第11章连续Hopfield神经网络的优化——旅行商问题优化计算100现对于一个城市数量为10的TSP问题,要求设计一个可以对其进行组合优化的连续型Hopfield神经网络模型,利用该模型可以快速地找到最优(或近似最优)的一条路线。
第12章SVM的数据分类预测——意大利葡萄酒种类识别112将这178个样本的50%做为训练集,另50%做为测试集,用训练集对SVM进行训练可以得到分类模型,再用得到的模型对测试集进行类别标签预测。
第13章SVM的参数优化——如何更好的提升分类器的性能122本章要解决的问题就是仅仅利用训练集找到分类的最佳参数,不但能够高准确率的预测训练集而且要合理的预测测试集,使得测试集的分类准确率也维持在一个较高水平,即使得得到的SVM分类器的学习能力和推广能力保持一个平衡,避免过学习和欠学习状况发生。
第14章SVM的回归预测分析——上证指数开盘指数预测133对上证指数从1990.12.20-2009.08.19每日的开盘数进行回归分析。
第15章SVM的信息粒化时序回归预测——上证指数开盘指数变化趋势和变化空间预测141在这个案例里面我们将利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测。
若您对此书内容有任何疑问,可以凭在线交流卡登录中文论坛与作者交流。
第16章自组织竞争网络在模式分类中的应用——患者癌症发病预测153本案例中给出了一个含有60个个体基因表达水平的样本。
每个样本中测量了114个基因特征,其中前20个样本是癌症病人的基因表达水平的样本(其中还可能有子类),中间的20个样本是正常人的基因表达信息样本,余下的20个样本是待检测的样本(未知它们是否正常)。
以下将设法找出癌症与正常样本在基因表达水平上的区
2024/5/17 0:50:14 5.38MB matlab 神经网络
1
PASS样本量计算
2024/5/9 7:20:53 46.44MB PASS 样本量计
1
mulan数据库中的emotions部分。
将原本的java数据文件转换为了txt格式和matlab支持的mat格式,训练样本和测试样本已经分类好,适用于进行多标签学习的数据库
2024/5/3 8:29:06 907KB emotions 多标签学习 识别 mulan
1
样本基于正态分布的朴素贝叶斯分类器,实测可用,内含数据
2024/5/1 4:38:11 6KB 贝叶斯 MATLAB
1
本文详细分析了IEEE1588时钟同步的基本原理,并在此基础上给出一种改进的时间同步方法。
该改进的时钟同步算法针对网络传输路径的不对称性引入加权因子,用一定时间窗内的主从时钟偏差样本的算术平均值而不是直接利用主从时钟偏差来调整从时钟,并根据算法的状态改变时间窗N的大小,同时利用方差阈值滤波的方法过滤跳变过大时钟偏差测量值,保证同步算法的稳定性。
最后给出Alcatel-LucentTSS5R系统在实验室的时间性能实验结果。
实验结果表明TSS5R时钟同步具有稳定的性能,同步精度达到亚微秒级,可满足PTN产品高精度时钟同步的要求。
1
1.设有随机初相信号X(t)=5cos(t+φ),其中相位φ是在区间(0,2π)上均匀分布的随机变量。
试用Matlab编程产生其三个样本函数。
2.假设平稳白噪声X(t)通过如图所示的线性系统,试求互相关函数,并画出其图形。
3.利用matlab程序设计一正弦型信号加高斯白噪声的复合信号。
(1)分析复合信号的功率谱密度、幅度分布特性;
(2)分析复合信号通过RC积分电路后的功率谱密度和相应的幅度分布特性;
(3)分析复合信号通过理想低通系统后的功率谱密度和相应的幅度分布特性。
4.利用matlab程序分别设计一正弦型信号,高斯白噪声信号。
(1)分别分析正弦信号、高斯噪声信号以及两者复合信号的功率谱密度、幅度分布特性;
(2)分别求(1)中的三种信号的Hilbert变换,并比较功率谱和幅度分布的变化。
(3)分别求(1)中的三种信号对应的复信号,并比较功率谱和幅度分布的变化。
(4)分析、观察(2)中的三种信号与其相应Hilbert变换信号之间的正交性。
5.利用matlab程序设计和实现图3.5.2所示的视频信号积累的检测系统,并对系统中每个模块的输入输出信号进行频域、时域分析,并分析相应信号的统计特性。
6.利用Matlab程序分别设计正弦信号、高斯白噪声信号,分析正弦信号、高斯白噪声信号以及这两者的复合信号分别通过以下四种非线性器件前后的功率谱和幅度分布变化:(1)全波平方律器件(2)半波线性律器件(3)单向理想限幅器件(4)平滑限幅器件
2024/4/28 8:46:40 1.21MB 西电 随机信号
1
SPXY一个用于化学计量学分析中样本选择的方法源代码完整,可直接使用。
2024/4/27 8:05:16 3KB 样本选择,化学计量学
1
这是一个用ANN(人工神经网络)对手写数字进行识别的程序。
有以下一些特性:1)前端(网页)用JavaScript,html5,css开发;
2)后端(服务器)用python写的(2.7版本);
3)功能:#支持在网页画布上(用鼠标)写数字,并会返回预测结果;
#支持重置网页画布;
#支持向服务器发送训练样本;
#支持图片预览,图片上传;
#支持对上传的图片中英文字母的识别。
这是一个非常酷的程序,C/S架构,代码也不是很复杂,而且设计了一些很有趣的知识(机器学习,神经网络,http数据传递,前后端开发等等)。
感兴趣的同学可以下载下来看一看,有不懂的可以评论留言。
2024/4/25 9:05:03 5.8MB OCR ANN神经网络 python开发 js+css+html
1
MATLAB源码集锦-基于马氏距离剔除异常样本代码
2024/4/24 18:07:41 74KB 马氏距离 剔除异常样本 MATLAB
1
一般的空间模式(CSP)是一种在脑-机接口(BCIs)背景下对脑电图(EEG)信号进行分类的流行算法。
本文介绍了一种小样本环境中CSP的正则化和聚合技术。
常规算法基于基于样本的协方差矩阵估计。
因此,如果训练样本的数量很少,其性能就会下降。
为了解决这一问题,提出了一种正则化的CSP(R-CSP)算法,该算法通过两个参数对协变矩阵估计进行正则化,从而降低估计方差,同时减小估计偏差。
为了解决正则化参数确定的问题,进一步提出了聚合(R-CSP-A)的R-CSP,并将一些R-CSP聚合在一起,给出了一个基于集合的解决方案。
提出了一种基于BCI竞争三种竞争算法的数据集IVa的算法。
实验表明,在SSS(小样本环境)中,R-CSP-A的平均分类性能明显优于其他方法。
2024/4/24 0:29:52 1.73MB 脑机接口 脑电信号分类
1
共 559 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡