奥迪Q5L使用说明书,适用19款、20款,PDF格式,带书签,高清,非扫描版此电子版说明书与原厂纸质版使用说明书内容相对应。
2024/11/29 0:03:03 14.6MB Q5L 说明书
1
PLL_锁相环的ADS_仿真、详细实例讲解如何用ADS进行锁相环的仿真与设计
2024/11/28 20:30:32 603KB 锁相环、ADS、PLL
1
与之前的DOS相配合,提供相应的程序
2024/11/24 9:28:02 118KB DOS 汇编程序
1
Delphi仿QQ聊天软件P2P全部源码,无加密,组件齐全,调试非常简单方便!发送联机或脱机消息,同时可自定义消息字体、颜色、大小等信息,支持插入表情符号,屏幕截取。
支持多人对话以及消息群发等功能;
在线即时语音、视频聊天;穿透网关防火墙,不同局域网任意对话;系统采用先进的点对点通讯技术,消息(包括文本、语音、视频、文件)的传输大多数情况不需要经服务器中转而直接发往接收者所使用的机器,传输速度更快。
而且因服务器仅仅只是起着维护用户状态列表的功能,因此占用资源极少,可允许同时在线的人数就越多,对系统的影响也最小。
可以设置各种离线状态,支持自定义状态;邮箱监测,新邮件到来提醒;用户可自定义界面,界面皮肤可在线更新;能和您的网站相融合,如果您在线,点击网站上在线图标,立即就能与您聊天沟通!
2024/11/21 21:33:18 45.54MB Delphi QQ P2P 源码
1
以质量分数为54.51Ti-37.68Ni-7.81B4C粉末混合物为原料,利用激光熔覆技术在TA15钛合金基材表面制得了以外加未熔B4C颗粒及快速凝固“原位”生成硼化钛和碳化钛为增强相,以金属间化合物TiNi、Ti2Ni为基体的复合涂层。
采用光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)等手段分析了涂层显微组织,并测试了涂层的二体磨粒磨损性能。
结果表明,激光熔覆硬质颗粒增强金属间化合物复合涂层硬度高、组织均匀并表现出优异的抗磨粒磨损性能。
高硬度、高耐磨的B4C、硼化钛和碳化钛陶瓷增强相与高韧性TiNi/Ti2Ni金属间化合物基体的强韧结合是激光熔覆涂层优异耐磨性的主要原因,其磨损机理为轻微的显微切削和塑性变形。
2024/11/17 14:35:26 4.89MB 激光技术 涂层 复合材料 激光熔覆
1
使用iar7.20h打开,烧录后可控制相对应传感器
2024/11/16 14:53:46 16.46MB Z-STACK 温湿度shtxx adxl345 l3g4200d
1
锁相环技术(第3版)-完整中文版,共十七章。
2024/11/16 10:27:29 31.38MB 锁相环技术
1
通过使用混合二氧化硅/聚合物波导结构并优化包层下二氧化硅和PMMA-GMA的厚度,Mach-Zehnder干涉仪(MZI)热光(TO)开关的响应速度和功耗得到了改善上覆层。
采用包括化学气相沉积(CVD),旋涂和湿蚀刻的制造技术来开发开关样品。
在1550nm波长下,测得的ON和OFF状态下的驱动功率分别为0和13mW,表明开关功率为13mW。
ON状态下的光纤插入损耗为15dB,ON状态和OFF状态之间的消光比为18.3dB,上升时间和下降时间分别为73.5和96.5s。
与基于Si/SiO2或全聚合物波导结构的TO开关相比,该器件具有低功耗和响应速度快的优点,这归因于其聚合物芯的TO系数大,上/下包层薄且体积大。
二氧化硅的导热性。
1
SLAM技术是目前机器人、自动驾驶、增强现实等领域的关键技术之一,是智能移动平台感知周围环境的基础技术。
本文介绍了基于视觉传感器(单目、双目、RGB-D等相机)的SLAM技术的原理和研究现状,包括基于稀疏特征的SLAM、稠密/半稠密SLAM、语义SLAM和基于深度学习的SLAM。
然而,现有的系统与方法鲁棒性并不高,随着人工智能技术的发展,深度学习与传统的基于几何模型的方法相结合的趋势正在形成,这将推动视觉SLAM技术朝着长时间大范围实时语义应用的方向前进。
视觉SLAM算法的现状1、基于稀疏性特征的SLAM2、稠密SLAM和半稠密SLAM3、语义SLAM4、基于深度学习的SLAM
2024/11/13 18:25:29 23.44MB 计算机视觉 SLAM
1
基于红外图像低分辨率、低对比度、视觉特性差的特性,以及传统的利用直方图均衡化进行红外图像增强的方法会丢失图像的细节信息、增强红外图像的噪声的特性,将小波变换的多尺度、多分辨率的特点和直方图均衡化的方法相结合,提出一种更好的实现红外图像增强的算法。
2024/11/10 14:54:01 536KB 小波变换 直方图均衡
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡