matlab语音除噪音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。
也就是说,课题更多的还是体现了数字信号处理技术[1]。
数字信号处理技术主要研究离散线性时不变系统,数字滤波和频谱分析是它的的两个主要分支。
数字滤波(Digitalfilter),即在形形色色的信号中提取所需信号,抑制不必要的干扰。
数字滤波器可以在时域实现也可以在频域实现,主要有两种类型;无限长冲击数字滤波器(IIR)和有限长冲击数字滤波器(FIR)。
频谱分析(SA,SpectrumAnalysis),对各种信号进行频域上的加工处理,其核心内容是快速傅里叶变换(FFT),分析的结果是一频率为坐标的各种物理量的谱线和曲线[2]。
从课题的中心来看,课题“基于MATLAB的有噪声语音信号处理”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。
作为存储于计算机中的语音信号,其本身就是离散化了的向量,我们只需将这些离散的量提取出来,就可以对其进行处理了。
这一过程的实现,用到了处理数字信号的强有力工具MATLAB[3]。
MATLAB是矩阵实验室(MatrixLaboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
它提供了功能齐全的滤波器设计,与信号处理交互式图形用户界面(Interactivegraphicaluserinterface),主要包括FDATool和SPATool两种交互式工具,其中FDATool主要用于数字滤波器设计与分析,而SPATool不仅可以设计分析滤波器,而且可以对信号进行时域与频域的分析[4]。
通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。
课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。
那么,就可以完全利用数字信号处理的知识来处理语音及加噪处理问题。
我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。
[5]
2021/8/15 16:17:31 829KB matlab
1
傅里叶变换相位解包裹法式,最原始的解包裹法式。
2020/6/9 11:03:18 25.24MB 傅里叶
1
本文引见了一种崭新的信号分析工具—分数阶傅里叶变换。
本文在简单引见了分数阶傅里叶变换的几种不同的引人途径和其基本性质之后,在时一频平面对分数阶傅里叶变换进行了研究,用经典的傅里叶变换变换的观点对分数阶傅里叶变换进行了解释。
2018/7/17 11:55:14 346KB 分数阶傅里叶变换
1
见过最好的关于傅里叶变换及反变换的c程序代码,分享给大家,希望给你协助!
2020/5/16 14:33:39 2KB 傅里叶变换与反变换程序
1
小波变换入门经典,从基础到高深,逐渐深入。
2016/7/14 22:21:49 3.97MB 小波
1
C#,VS2005,包括哈弗曼编码、香农编码、香农-弗诺编码、行程编码、LZW编码、预测编码、傅里叶变换编码、小波变换编码
2017/10/6 3:30:51 1.96MB C# VS2005 图像压缩
1
C#,VS2005,包括哈弗曼编码、香农编码、香农-弗诺编码、行程编码、LZW编码、预测编码、傅里叶变换编码、小波变换编码
2021/3/16 23:21:14 1.96MB C# VS2005 图像压缩
1
傅里叶变换和傅里叶逆变换的C++代码,亲测,有详细的解释。
有成绩可以留言。
2018/11/23 10:26:04 3.81MB 傅里叶变换 C++
1
傅里叶变换和傅里叶逆变换的C++代码,亲测,有详细的解释。
有成绩可以留言。
2018/11/23 10:26:04 3.81MB 傅里叶变换 C++
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2019/5/1 5:12:10 973B 数字全息
1
共 217 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡