EGM2008,2.5分的模型,一般的大地水准面拟合够用了,在国内模型地方精度差点,但比大多数国内的模型要好。
2024/3/25 20:15:14 128.9MB yi
1
利用曲面拟合的方法实现图像亚像素级移动完整程序
2024/3/25 19:58:24 1KB 曲面拟合 亚像素 matlab
1
对于一个二元非线性函数z=f(x,y),构建神经网络并对其进行训练,使其在定义域内对此二元函数进行拟合。
主函数是bp2.py,配好环境解压后直接打开运行即可,现在是迭代20次,如果需要换函数,修改21行的z[j][i]
2024/3/25 19:13:37 5KB python 神经网络 拟合函数
1
IDL树高反演三阶段算法直线拟合IDL树高反演三阶段算法直线拟合IDL树高反演三阶段算法直线拟合linefitregressladfit
2024/3/23 20:19:11 5KB SAR 三阶段算法 直线拟合
1
李庆扬著,清华大学出版社,《数值计算原理》包括数值逼近、插值与拟合,数值积分,线性与非线性方程组数值解法,矩阵特征值与特征向量计算,常微分方程初值问题,刚性问题与边值问题数值方法,以及并行算法概述等。
2024/3/22 5:16:30 2.01MB 数值计算原理
1
通过C#实现加权平均拟合,主要针对线性问题的解决。
2024/3/18 10:13:30 73KB C#
1
曲线拟合算法,很有用,希望大家有用,一起分享,谢谢
2024/3/12 6:01:32 6KB 曲线拟合算法
1
基于matlabGPS水准高程拟合计算,绘图
2024/3/7 0:08:57 6KB matlab GPS水准高程拟合
1
针对神经网络算法在当前PM2.5浓度预测领域存在的易过拟合、网络结构复杂、学习效率低等问题,引入RFR(randomforestregression,随机森林回归)算法,分析气象条件、大气污染物浓度和季节所包含的22项特征因素,通过调整参数的最优组合,设计出一种新的PM2.5浓度预测模型——RFRP模型。
同时,收集了西安市2013--2016年的历史气象数据,进行模型的有效性实验分析。
实验结果表明,RFRP模型不仅能有效预测PM2.5浓度,还能在不影响预测精度的同时,较好地提升模型的运行效率,其平均运行时间为O.281S,约为BP-NN(backpropagationneuralnetwork,BP神经网络)预测模型的5.88%。
2024/3/5 9:44:07 1.18MB 回归分析
1
由于神经网络具有拟合非线性的能力,所以可以用神经网络来处理内部模型的非线性特性,因此这种内部模型采用神经网络的非线性PLS方法得到了广泛的应用。
传统的前馈神经网络在训练中采用梯度学习算法,网络中的参数需要迭代更新,不仅训练时间长,而且容易导致局部极小和过度训练等问题,另外其多隐层的结构也导致了样本训练速度慢,训练误差大"此外,Bartlett提出对于已达到最小训练误差的前馈神经网络,权值越小泛化特性越好,而传统的梯度学习算法仅仅考虑训练误差最小,忽视了权值大小对网络的影响,这些问题都将影响到模型的泛化特性。
2024/3/4 2:50:15 16KB elm&pls
1
共 472 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡