yolov3权重文件,官方下载对照慢,这边上传保存一下
2015/8/2 1:34:14 219.79MB yolov3
1
机器博弈是人工智能学科研究的载体,亚马逊棋作为一个相对较新的博弈棋种,走棋特点介于围棋和象棋之间,非常适合用来进行机器博弈研究。
以亚马逊棋博弈系统为实验平台,对机器博弈中的关键技术之一——评估函数进行了研究。
以territory、position、mobility三个主要评估特征为基础,根据亚马逊棋在开局、中局以及残局三个不同阶段的棋局特点,分析了不同阶段中各评估因子的重要程度以及权重取值,最初得到一个分阶段的评估函数。
通过实验结果可知,提出的棋局评估函数是可行并且有效的。
2016/10/3 3:24:28 548KB 论文研究
1
标准PSO算法的matlab程序,惯性权重线性递减,用Griewank函数测试,收敛特性杰出。
2019/11/10 9:34:45 2KB PSO Griewank函数
1
matlab最优化程序包括无约束一维极值问题进退法黄金分割法斐波那契法牛顿法基本牛顿法全局牛顿法割线法抛物线法三次插值法可接受搜索法Goidstein法Wolfe.Powell法单纯形搜索法Powell法最速下降法共轭梯度法牛顿法修正牛顿法拟牛顿法信任域法显式最速下降法,Rosen梯度投影法罚函数法外点罚函数法內点罚函数法混合罚函数法乘子法G-N法修正G-N法L-M法线性规划单纯形法修正单纯形法大M法变量有界单纯形法整数规划割平面法分支定界法0-1规划二次规划拉格朗曰法起作用集算法路径跟踪法粒子群优化算法基本粒子群算法带压缩因子的粒子群算法权重改进的粒子群算法线性递减权重法自适应权重法随机权重法变学习因子的粒子群算法同步变化的学习因子异步变化的学习因子二阶粒子群算法二阶振荡粒子群算法
2015/7/25 6:38:01 36KB matlab 黄金分割 斐波那契法
1
针对常用的空间插值方法在精度分析方面比较的不足,从地质统计学、数学函数和几何方法方面分别选取普通克里金插值法、三次样条函数法和间隔权重倒数法进行插值精度的比较与分析
2018/1/8 4:30:11 969KB 空间分析插值
1
SystemVerilog的听课学习笔记,包括讲义截取、知识点记录、注意事项等细节的标注。
目录如下:第一章SV环境构建常识 1 1.1数据类型 1 四、二值逻辑 4 定宽数组 9 foreach 13 动态数组 16 队列 19 关联数组 21 枚举类型 23 字符串 25 1.2过程块和方法 27 initial和always 30 function逻辑电路 33 task时序电路 35 动态静态变量 39 1.3设计例化和连接 45第二章验证的方法 393 动态仿真 395 静态检查 397 虚拟模型 403 硬件加速 405 效能验证 408 功能验证 410第三章SV组件实现 99 3.1接口 100 什么是interface 101 接口的优势 108 3.2采样和数据驱动 112 竞争问题 113 接口中的时序块clocking 123 利于clocking的驱动 133 3.3测试的开始和结束 136 仿真开始 139 program隐式结束 143 program显式结束 145 软件域program 147 3.4调试方法 150第四章验证的计划 166 4.1计划概述 166 4.2计划的内容 173 4.3计划的实现 185 4.4计划的进程评估 194第五章验证的管理 277 6.1验证的周期检查 277 6.2管理三要素 291 6.3验证的收敛 303 6.4问题追踪 314 6.5团队建设 321 6.6验证的专业化 330第六章验证平台的结构 48 2.1测试平台 49 2.2硬件设计描述 55 MCDF接口描述 58 MCDF接口时序 62 MCDF寄存器描述 65 2.3激励发生器 67 channelinitiator 72 registerinitiator 73 2.4监测器 74 2.5比较器 81 2.6验证结构 95第七章激励发生封装:类 209 5.1概述 209 5.2类的成员 233 5.3类的继承 245 三种类型权限protected/local/public 247 thissuper 253 成员覆盖 257 5.4句柄的使用 263 5.5包的使用 269第八章激励发生的随机化 340 7.1随机约束和分布 340 权重分布 353 条件约束 355 7.2约束块控制 358 7.3随机函数 366 7.4数组约束 373 7.5随机控制 388第九章线程与通信 432 9.1线程的使用 432 9.2线程的控制 441 三个fork...join 443 等待衍生线程 451 停止线程disable 451 9.3线程的通信 458第十章进程评估:覆盖率 495 10.1覆盖率类型 495 10.2功能覆盖策略 510 10.3覆盖组 516 10.4数据采样 524 10.5覆盖选项 544 10.6数据分析 550第十一章SV语言核心进阶 552 11.1类型转换 552 11.2虚方法 564 11.3对象拷贝 575 11.4回调函数 584 11.5参数化的类 590第十二章UVM简介 392 8.2UVM简介 414 8.3UVM组件 420 8.4UVM环境 425
2022/10/19 15:18:43 47.25MB systemverilog
1
1、yolov5车辆行人检测,包含yolov5s和yolov5m两种训练好的车辆行人检测权重,在一万多张交通场景行人车辆数据集中训练得到的权重,有pyqt界面,目的类别为person和car共2个类别,并附5000多张行人车辆检测数据集,标签格式为txt和xml两种,分别保存在两个文件夹中2、pyqt界面可以检测图片、视频和调用摄像头,有相应的选择项3、数据集和检测结果参考:https://blog.csdn.net/zhiqingAI/article/details/1242307434、采用pytrch框架,python代码
1
•Alpha-Beta剪枝(Alpha-Betapruning)对于一般的最大最小搜索,即使每一步只有很少的下法,搜索的位置也会增长非常快;
在大多数的中局棋形中,每步平均有十个位置可以下棋,于是假设搜索九步(程序术语称为搜索深度为九),就要搜索十亿个位置(十的九次方),极大地限制了电脑的棋力。
于是采用了一个方法,叫“alpha-beta剪枝”,它大为减少了检测的数目,提高电脑搜索的速度。
各种各样的这种算法用于所有的强力Othello程序。
(同样用于其他棋类游戏,如国际象棋和跳棋)。
为了搜索九步,一个好的程序只用搜索十万到一百万个位置,而不是没用前的十亿次。
•估值这是一个程序中最重要的部分,如果这个模块太弱,则就算算法再好也没有用。
我将要叙述三种不同的估值函数范例。
我相信,大多数的Othello程序都可以归结于此。
棋格表:这种算法的意思是,不同的棋格有不同的值,角的值大而角旁边的格子值要小。
忽视对称的话,棋盘上有10个不同的位置,每个格子根据三种可能性赋值:黑棋、白棋和空。
更有经验的逼近是在游戏的不同阶段对格子赋予不同的值。
例如,角在开局阶段和中局开始阶段比终局阶段更重要。
采用这种算法的程序总是很弱(我这样认为),但另一方面,它很容易实现,于是许多程序开始采用这种逼近。
基于举动力的估值:这种更久远的接近有很强的全局观,而不像棋格表那样局部化。
观察表明,许多人类玩者努力获得最大的举动力(可下棋的数目)和潜在举动力(临近对手棋子的空格,见技巧篇)。
如果代码有效率的话,可以很快发现,它们提高棋力很多。
基于模版的估值:正如上面提及的,许多中等力量的程序经常合并一些边角判断的知识,最大举动力和潜在举动力是全局特性,但是他们可以被切割成局部配置,再加在一起。
棋子最少化也是如此。
这导致了以下的概括:在估值函数中仅用局部配置(模版),这通常用单独计算每一行、一列、斜边和角落判断,再加在一起来实现。
估值合并:一般程序的估值基于许多的参数,如举动力、潜在举动力、余裕手、边角判断、稳定子。
但是怎么样将他们合并起来得到一个估值呢?一般采用线性合并。
设a1,a2,a3,a4为参数,则估值s:=n1*a1+n2*a2+n3*a3+n4*a4。
其中n1,n2,n3,n4为常数,术语叫“权重”(weight),它决定了参数的重要性,它们取决于统计值。
2017/8/17 10:01:12 884KB 黑白棋 算法 论文
1
其于原有20万带IDF权重的词典,经过去重,增加,合并后成了120万;
线上系统正在使用中,非常不错;
后面我会将常用度量的也加上。
最终构成超全的词库
2016/2/22 11:30:53 15.97MB 分词 词库 IDF 词典
1
本代码可以实现在Excel中自动计算熵权法权重,可以呈现每一步的计算结果
2021/1/21 17:29:14 5.78MB VBA Excel VB Code
1
共 187 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡