多线性回归的MatLab例子(带有数据与代码,可运行显示图形)
2024/4/12 22:32:37 2KB 线性规划 MatLab
1
运用pso方法优化lssvm的sig2gam两参数对数据进行回归预测
2024/4/11 16:10:20 3KB psolssvm
1
stata小插件,可以帮助导出回归结果,存储为word或者excel格式。
2024/4/10 18:03:03 122KB stata
1
1stOpt一套数学优化分析综合工具软件包。
在非线性回归,曲线拟合,非线性复杂模型参数估算求解,线性/非线性规划等领域傲视群雄,首屈一指,居世界领先地位。
其计算核心是基于七维高科有限公司科研人员十数年的研究成果【通用全局优化算法】(UniversalGlobalOptimization-UGO),该算法之最大特点是克服了当今世界上在优化计算领域中使用迭代法必须给出合适初始值的难题,即用户勿需给出参数初始值,而由1stOpt随机给出,通过其独特的全局优化算法,最终找出最优解。
---------------------------------------------以非线性回归为例,目前世界上在该领域最有名的软件包诸如Matlab,OriginPro,SAS,SPSS,DataFit,GraphPad等,均需用户提供适当的参数初始值以便计算能够收敛并找到最优解。
如果设定的参数初始值不当则计算难以收敛,其结果是无法求得正确结果。
而在实际应用当中,对大多数用户来说,给出(猜出)恰当的初始值是件相当困难的事,特别是在参数量较多的情况下,更无异于是场噩梦。
而1stOpt凭借其超强的寻优,容错能力,在大多数情况下(>90%),从任一随机初始值开始,都能求得正确结果。
2024/3/30 14:24:30 10.1MB 回归 1stopt 规划
1
回归/拟合算法工具,包含直线拟合,二次曲线拟合,三次曲线拟合,四参数拟合等算法
2024/3/29 14:43:44 284KB 回归/拟合算法工具
1
数据科学入门,第二版,介绍数据科学基本知识的重量级读本,Google数据科学家作品。
  数据科学是一个蓬勃发展、前途无限的行业,有人将数据科学家称为“21世纪头号性感职业”。
本书从零开始讲解数据科学工作,教授数据科学工作所必需的黑客技能,并带领读者熟悉数据科学的核心知识——数学和统计学。
  作者选择了功能强大、简单易学的Python语言环境,亲手搭建工具和实现算法,并精心挑选了注释良好、简洁易读的实现范例。
书中涵盖的所有代码和数据都可以在GitHub上下载。
  通过阅读本书,你可以:  学到一堂Python速成课;
  学习线性代数、统计和概率论的基本方法,了解它们是怎样应用在数据科学中的;
  掌握如何收集、探索、清理、转换和操作数据;
  深入理解机器学习的基础;
  运用k-近邻、朴素贝叶斯、线性回归和逻辑回归、决策树、神经网络和聚类等各种数据模型;
  探索推荐系统、自然语言处理、网络分析、MapReduce和数据库。
2024/3/25 19:37:40 4.65MB data
1
以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或randomforest也是常以其为基础的决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序无序,nodeimpurity对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度对于回归问题,我们用方差Variance来表示无序程度,方差越大,说明数据间差异越大用于表示,由父节点划分后得到子节点,所带来的impurity的下降,即有序性的增益下面直接看个regression的例子,分类的case,差不多,还是比较简单的,由于是回归,所以impurity的定义为variancema
2024/3/22 19:16:07 137KB SparkMLlib-DecisionTree源码分析
1
在监督学习中,给定一组数据,我们知道正确的输出结果应该是什么样子,并且知道在输入和输出之间有着一个特定的关系。
这么说可能理解起来不是很清晰,没关系,后面有具体的例子。
监督学习可分为“回归”和“分类”问题。
监督学习分类在回归问题中,我们会预测一个连续值。
也就是说我们试图将输入变量和输出用一个连续函数对应起来;
而在分类问题中,我们会预测一个离散值,我们试图将输入变量与离散的类别对应起来。
下面举两个例子,就会非常清楚这几个概念了。
通过房地产市场的数据,预测一个给定面积的房屋的价格就是一个回归问题。
这里我们可以把价格看成是面积的函数,它是一个连续的输出值。
但是,当把上面的问题改为“预测一个给定面积的房
1
COVID个人风险计算器根据您的年龄,性别,种族,症状,健康状况,行为等,计算个人患COVID的风险...风险=((活动案例中社区的比例)(症状概率)(敏感性))/(归一化因子)请注意,可以从NYTimesCOVID-19github上检索“us-counties.csv”文件。
链接到这里对症状风险的计算是通过对没有COVID和具有COVID的患者的症状报告进行逻辑回归。
ALAMA发表的论文将健康风险纳入了我们的计算器。
链接到这里根据年龄如何影响您的死亡,进入重症监护病房和住院的机会的不同研究,使用指数分布将COVID年龄转换为死亡,重症监护病房和住院的可能性。
社区风险是使用从NYTimesCOVID-19github检索的us-counties.csv文件计算的。
文件每周更新一次。
贡献者团队马凯文-团队负责人/数据科学家TimothyGa
2024/3/15 10:15:29 17.53MB Python
1
python预测分析核心算法(含大量实例代码)在学习和研究机器学习的时候,面临令人眼花缭乱的算法,机器学习新手往往会不知所措。
本书从算法和Python语言实现的角度,帮助读者认识机器学习。
本书专注于两类核心的“算法族”,即惩罚线性回归和集成方法,并通过代码实例来展示所讨论的算法的使用原则。
全书共分为7章,详细讨论了预测模型的两类核心算法、预测模型的构建、惩罚线性回归和集成方法的具体应用和实现。
本书主要针对想提高机器学习技能的Python开发人员,帮助他们解决某一特定的项目或是提升相关的技能
2024/3/13 4:49:50 16.38MB python
1
共 491 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡