《ImageProcessingandAnalysis》将现代数学与现代图像处理中最先进的方法联系起来,组织成一个连贯的逻辑结构。
作者通过它们连接到傅里叶和光谱分析中的少数共同线程,揭示了传统图像处理的原理,从而整合了现代图像处理方法的多样性。
可以说,这本书是全面而且综合的,它涵盖了当代图像分析和处理中的4个最强大的数学工具类,同时也探索了它们的内在连接和集成。
2023/10/11 9:24:29 7.84MB Image processing
1
选取windows系统自带的ding.wav信号作为分析对象,在Matlab软件平台下,利用函数wavread对音频信号进行采样,记住采样频率和采样点数,听一下原始声音sound(y,fs,bits)。
(2)音频信号的频谱分析,先画出音频信号的时域波形;
然后对音频号进行快速傅里叶变换fft(y,N),N取32768,画出信号的频谱特性,加深对频谱特性的理解。
(3)根据频谱,反演时域特性,画出时域波形。
寻找幅值最大的两个频率,此频率除以fft点数在乘以采样频率就是信号的主频,即可合成信号的时域图形,听一下声音。
(4)对原音频信号进行1024点的分段付立业分析meshgrid(5)根据主要频线合成音频,并画出时域图形,试听合成效果。
(6)采用线性插值(linspace)和傅立业反变换(fliplr,ifft)分别合成音频,并画出时域图形,试听效果。
2023/10/9 9:49:25 48KB ding 音频信号的频谱分析
1
主要内容包括:抽象积分、正博雷尔测度、Lp-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、最大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、Hp-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。
另外,书中还附有大量设计巧妙的习题。
2023/10/8 5:28:36 6.88MB 数学
1
阿里巴巴泄露门使用的傅里叶变换隐藏水印(含源码)相对于空域方法,频域加盲水印的方法隐匿性更强,抵抗攻击能力更强。
这类算法解水印困难,你不知道水印加在那个频段,而且受到攻击往往会破坏图像原本内容。
本文简要科普通过频域手段添加数字盲水印。
对于web,可以添加一个背景图片,来追踪截图者。
所谓盲水印,是指人感知不到的水印,包括看不到或听不见(没错,数字盲水印也能够用于音频)。
其主要应用于音像作品、数字图书等,目的是,在不破坏原始作品的情况下,实现版权的防护与追踪。
添加数字盲水印的方法简单可分为空域方法和频域方法,这两种方法添加了冗余信息,但在编码和压缩情况不变的情况下,不会使原始图像大小产生变化(原来是10MB添加盲水印之后还是10MB)。
2023/10/7 22:17:53 28.67MB 阿里巴巴 傅里叶变换 盲水印
1
利用fftw库进行傅里叶变换的步骤及实例附编译好的库文件,及详细设置步骤,代码中有解释。
2023/9/28 10:01:19 5.53MB fftw 傅里叶变换 C++
1
傅里叶分解计算基波有效值相位角和各次谐波的有效值和相位角
2023/9/16 16:25:39 23KB 傅立叶
1
快速傅里叶变换是应用最广泛的一种谐波检测方法,但直接利用快速傅里叶变换进行谐波检测存在较大的误差,影响谐波分析结果的准确性。
通过加汉宁窗及插值修正算法可以改善计算谐波频率、相位和幅值的准确度。
简述了电力系统谐波检测非同步采样加汉宁窗插值算法的原理,并采用巴特沃斯低通滤波器滤除高频噪声。
MATLAB仿真结果表明,加汉宁窗插值算法具有检测精度好,实现简单的优点。
2023/9/16 7:19:57 3KB 谐波检测 加汉宁窗插值
1
本代码利用了分数阶傅里叶变换的方法,通过双随机实现图像加密的功能,并且对分数阶数的敏感度如峰值信噪比和相关系数等进行代码分析,此方法增加了密钥空间且增加了安全性,代码完全可以直接运行。
2023/9/15 4:29:50 222KB matlab
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
这是关于计算全息的实验模拟程序,适合计算全息入门的朋友!!
2023/9/1 21:01:22 273KB 计算全息 实验
1
共 324 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡