1.利用驻定相位原理推到线性调频信号的频谱。
2.在Matlab中对直接fft和驻定相位原理推导的结果进行比较仿真。
2023/12/8 21:02:20 769KB MATLAB LFM POSP
1
当前,基于全球定位系统的室外定位技术已经发展得很成熟。
然而,在室内中卫星信号容易丢失,定位效果差的问题仍然没有得到有效解决。
伴随LED照明产业的大力发展,基于可见光通信的室内定位系统,作为一种将照明与光通信结合在一起的技术,具有绿色节能、节约频谱资源、推广实施方便的特点,近来已成为一个非常热门的研究课题。
本文对基于可见光室内定位方案的研究现状做了归纳,可总结为基于几何关系的三角测量法、基于查表的LED标签两大类。
详细分析了两类方法的基本原理,并对不同定位方法的性能进行了比较。
最后,讨论这方面的挑战性问题,并指出未来的方向。
2023/12/8 13:23:46 547KB 光室内定位
1
1、 编写函数文件caiyang.m,实现将任意函数进行任意频率的采样;
2、 编写函数文件huifu.m,实现对采样信号的恢复;
3、 设信号f1(t)=sin(100πt),试调用函数文件caiyang.m实现信号采样fs1(t),并显示f1(t)和fs1(t)的波形及频谱,说明二者在频域上的关系。
调用huifu.m,实现对上述采样信号fs1(t)的恢复,并显示恢复后的信号及其频谱,对结果进行解释。
4、 设信号,t,在取样间隔分别为Ts=0.7π(令Ωm=1,Ωc=1.1Ωm)和Ts=1.5π(令Ωm=1,Ωc=Ωm)的两种情况下,对信号f(t)进行采样,试编写MATLAB程序代码,并绘制出采样信号波形、由采样信号得到的重构信号波形以及两信号的绝对误差波形。
5、 MATLAB设计相应的信号处理系统界面
2023/12/6 13:46:10 114KB matlab 课程设计 信号
1
1)可记录病人的姓名、年龄、性别、病史、不同疾病部位等状况;
2)对病人的气管、肺部等区域的声音进行采集、分析、存储(前端听诊部分不用考虑,只考虑数据采集部分)。
3)可分析不同声音分量的大小,给出频谱图,以及主要频率的幅度,便于大夫分析和验证;
4)由于采集到的信号经常存在某些干扰信号,比如心脏的震动,请设计低通、带通、带阻滤波器对信号处理,滤波器参数在用户界面中可以进行设置,方便医生进行使用;
5)编制GUI用户界面。
2023/12/1 6:48:47 1.03MB matlab 滤波器 GUI
1
有关认知无线电频谱感知算法的入门教程,简单易懂,配合其中提到的论文可以掌握频谱感知算法的基础
2023/11/25 10:56:56 1.09MB spectrum sensing 入门教程
1
LabVIEW入门,简单的实时声音采集,并滤波,然后进行频谱分析
2023/11/23 14:53:41 50KB LabVIEW 声音采集 滤波
1
51单片机音乐播放器的设计,在LCD12864液晶显示频谱高低。
通过按键暂停,播放音乐。
并有下一曲,上一曲等功能。
程序+原理图
2023/11/21 13:41:01 8.31MB 51单片机 音乐播放器 LCD12864液晶 按键
1
光学超级通道多播,将一个超级通道同时复制到单个设备中的多个光谱位置,对于未来的光学网络来说,可能是一种很有前途的功能。
高非线性光纤(HNLF)中的多泵四波混频(FWM)是一种实现超通道多播的有效方法。
但是,如果不仔细配置泵的频率,则生成的副本将在频谱上分散,这将增加控制副本性能和管理频谱资源的难度。
在本文中,我们提出了一种递归泵相加(RPA)方案,该方案使副本的频谱聚合度高于我们以前的指数增长间隔(EGS)泵浦方案。
这种副本聚合技术可以减少远离原始通道的副本的相位不匹配,这对副本的性能很有帮助。
\{RPA\}方案还为多播提供了副本分配的附加选项。
基于\{RPA\}方案,我们通过实验证明了5个泵的1到21超通道多播。
与典型的7%前向纠错(FEC)阈值相比,所有副本的Q因子余量均超过2.3dB。
还研究了\{RPA\}和\{EGS\}泵方案之间的性能比较。
2023/11/13 1:33:39 3.34MB Aggregation techniques; Effective approaches;
1
安捷伦频谱仪编程指导手册,采用SCPI语言
2023/11/9 0:43:05 5.88MB 安捷伦频谱仪 编程
1
根据平稳随机过程理论,根据船舶海上运动频谱,模拟了船舶的海上横摇、纵摇运动
2023/11/7 15:28:03 26KB matlab 船舶运动 横摇 纵摇
1
共 373 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡