5G网络整体规划思考、链路预算关键参数探讨、仿真及小区参数规划引见
2021/11/10 21:57:15 4.27MB 5G 规划 链路预算 仿
1
分析了双极化QPSK(DP-QPSK)系统中光纤非线性极化旋转引起的串扰,并仿真了100Gbps系统。
结果表明,一个通道会在另一通道上产生串扰和星座图重影,并且串扰星座图的旋转角度与影响信号的强度成反比。
当总输入功率小于4mW时,串扰效应可以忽略,否则,当总功率大于20mW时,串扰非常明显。
此外,无法根据中继光纤中PoincareSphere的输出眼图和SOP来监视串扰,这使得对光纤中继链路的监视变得困难。
2017/1/5 15:09:22 1.01MB QPSK format; Polarization Multiplexing;
1
北邮计算机网络实验报告,是数据链路层的滑动窗口协议,采用选择重传协议,报告中内容完好,包含结构说明,代码说明,程序流程图,结果分析(表格),探究分析,源程序等。
2018/1/11 18:08:29 252KB 北邮 计算机网络 滑动窗口 实验报告
1
C++网络编程实例文件,里面包含各个章节的C++源码。
第一章网络通信基础第二章认识Windows编程模型第三章网络基本使用在VC++中的实现第四章串口通信及其实例第五章使用层协议及编程实例第六章传输层协议及编程实例第七章网络层协议和数据链路层第八章Internet通信原理以及编程实例第九章基于WindowsAPI的虚拟终端实现第十章多线程网络文件传输的设计与实现第十一章防火墙的设计与实现第十二章邮件转发器第十三章telnetbbs
2021/1/24 8:37:29 12.01MB C++ 网络编程 实例 源码
1
为了处理传统遗传算法中易早熟和陷入局部最优,造成收敛慢,效率低的问题,提出了一种改进的遗传算法GBLSA(GeneticBasedonLink-StateAlgorithm)。
对遗传算法的基本算子进行改进,其中将链路状态算法强大的寻优能力融入交叉算子中,保证个体逐代进化。
引入与遗传代数相关的自适应概率,提高了遗传算法的搜索效率和收敛速度。
仿真实验表明,与传统遗传算法和TSPLIB标准值相比,提出的方法得到的结果路径更优,效率更高。
1
微效劳下的APM全链路监控微效劳下的APM全链路监控微效劳下的APM全链路监控微效劳下的APM全链路监控
2019/4/27 1:24:56 3.03MB 微服务
1
目录第一章无线传感器网络概述 6概述 61.1NS-2 61.2OPNET 61.3SensorSim 71.4EmStar 71.5GloMoSim 71.6TOSSIM 71.7PowerTOSSIM 8第二章OMNET++简介 9概述 92.1OMNeT++框架 92.1.1OMNeT++组成 92.1.2OMNeT++结构 102.2OMNeT++的安装 112.3OMNeT++语法 122.3.1NED语言 122.3.1.1NED总概述 122.3.1.2Ned描述的组件 132.3.1.3函数 152.3.2简单模块 172.3.2.1OMNET++中离散事件 172.3.2.2包传输模型 172.3.2.3定义简单模块 182.3.2.4简单模块中的主要成员函数 202.3.3消息 212.3.3.1cMessage类 212.3.3.2消息定义 212.3.3.3消息的收发 222.3.4模块参数、门及连接的访问 232.3.4.1消息参数的访问 232.3.4.2门和连接的访问 242.3.4.3门的传输状态 262.3.3.4连接的状态 262.4仿真过程 272.5配置文件omnetpp.ini 282.6结果分析工具 292.6.1矢量描绘工具Plove 292.6.2标量工具Scalar 2927、结束语 30第三章物理层仿真(信道) 323.1UWB的基础知识 323.1.1UWB信号的应用背景 323.1.2UWB信号的定义 323.1.3UWB的脉冲生成方式(高斯脉冲,非高斯脉冲) 343.1.4UWB的调制方式 343.1.5用功率控制多址接入方法来进行链路的建立控制 363.2用OMNeT++对UWB进行仿真 373.2.1算法仿真的概述 373.2.2算法的具体流程 393.2.3算法的主要代码 413.2.4仿真结果分析 583.2.5应用前景 58参考文献 59第四章MAC层仿真 60概述 604.1无线传感器网络MAC层特性及分类 604.1.1无线信道特性 604.1.2MAC设计特性分析 614.1.3无线传感器网络典型MAC协议的分类 614.2基于随机竞争的MAC协议 624.2.1S-MAC协议[12] 624.2.2T-MAC协议 644.2.3AC-MAC协议 654.3基于时分复用的MAC协议 654.3.1D-MAC协议 654.3.2TRAMA协议 664.3.3AI-LMAC协议 664.4其他类型的MAC协议 674.4.1SMACS/EAR协议 674.4.2基于CDMA技术的MAC协议 674.4.3DCC-MAC 684.5基于OMNeT++的MAC层协议仿真 694.5.1S-MAC协议的仿真 694.5.2S-MAC协议流程图 704.5.3S-MAC协议的分析 714.6小结 86参考文献 86第五章网络层仿真 88概述 885.1无线传感器网络路由协议研究 885.1.1无线传感器网络协议分类 885.1.2无线传感器网络中平面路由 905.1.3无线传感器网络中层次化路由 915.1.4经典算法的OMNET仿真 935.2无线传感器网络路由协议研究的发展趋势 1045.3无线传感器网络层路由协议与OMNET++仿真 1045.3.1无线传感器网络层路由与OMNET++仿真的基本概念[19] 1045.3.1.1传感器网络的体系结构 1055.3.1.1.1传感节点的物理结构 1055.3.1.1.2传感器网络的体系结构与网络模型 1065.3.2传感器网络层路由协议的基本概念 1065.3.2.1网络通信模式[28] 1065.3.2.1.1单播: 1075.3.2.1.2广播: 1075.3.2.1.3组播: 1085.3.2.2传感器网络层设计[29] 1085.3.3OMNET++仿真软件的基本概念 1095.4无线传感器网络路由协议引见 1105.4.1泛洪法(Flooding)[32] 1115.4.2定向扩散(DirectedDiffusion:DD)[33] 1125.4.3LEACH(EnergyAdaptiveClusteringHierarchy)[34] 1135.5.OMNET++仿真实例 1145.5.1泛洪
2017/6/14 11:33:17 2.44MB 仿真
1
模仿数据链路层的gobackn协议/*该协议是搭载ack的回退n步协议*/#include#include"protocol.h"#definemax_seq7#defineflag126#defineESC100#definewait_time2700 //发送计时器等待的时间#defineack_wait_time280staticintphl_ready=0;unsignedcharbuf[max_seq+1][270];unsignedcharack[8];//发送空的ack帧unsignedcharin_buf[600],last_buf[520];//接收时的缓冲区;去掉冗余之后的缓冲区,为防备因误码两帧合并为一帧而定义了很大一个数组intnbuffered=0;//发送的帧数intbuf_size[max_seq+1];//记下以发送各帧的帧长intnext_frame_to_send=0;intframe_in_phl=0;//用于成帧intframe_expected=0;intack_expected=0;intbetween(inta,intb,intc){ if(((a<=b)&&(b<c))||((c<a)&&(a<=b))||((b<c)&&(c<a))) return1; elsereturn0;}//判断帧尾,防止出现误判escescflag为数据的情况intend_flag(intin_len){ intcount=0; inti; if(in_len=0;i--)//记录flag前的esc数目 count++; returncount%2;//若flag前的esc为偶数,则为帧尾}//成帧函数--数据帧voidsend_frame(char*my_buf,intlen){ intn; buf[frame_in_phl][0]=(frame_expected+max_seq)%(max_seq+1); //ack buf[frame_in_phl][1]=frame_in_phl; //发送帧的帧号 for(n=0;n<len;n++) buf[frame_in_phl][n+2]=my_buf[n]; //将处理过的新帧赋值到缓冲区中 len=len+2; *(unsignedint*)(buf[frame_in_phl]+len)=crc32(buf[frame_in_phl],len); //在原始帧的基础上加检验和 buf_size[frame_in_phl]=len+4; //记录当前帧的长度,包括3个帧头,4个检验和 nbuffered=nbuffered+1; //缓冲区占用数加一 frame_in_phl=(frame_in_phl+1)%(max_seq+1);}//成帧函数--ack帧voidsend_ack() //ack帧的处理{ ack[0]=(frame_expected+max_seq)%(max_seq+1); ack[1]=max_seq+10; //ack帧的序号位,使ack[1]==frame_expected恒不成立 *(unsignedint*)(ack+2)=crc32(ack,2); //在原始帧的基础上加检验和}//主函数intmain(intargc,char**argv){intevent,arg,n,m,i,j,len=0,in_len=0; unsignedcharmy_buf[260]; intphl_wait=0;//在物理层中还没有被发送的帧protocol_init(argc,argv);enable_network_layer();for(;;){event=wait_for_event(&arg);switch(event){caseNETWORK_LAYER_READY:
2019/7/26 21:18:43 425KB go back n gobackn
1
PDT数字集群通信零碎技术规范-空中接口物理层及数据链路层(标准版).doc
2015/9/25 22:52:58 8.97MB DMR PDT
1
linux平台本人实现ping的功能,ping是基于ICMP协议实现的一种网络链路测试工具,提供用户本人测试链路,IP在代码里写死了,可以根据本人的需要加以修改。
2020/6/1 11:24:56 8KB ping ICMP socket
1
共 181 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡