SteemaTeeChartfor.NET2017Evaluation4.1.2017.03147的破解版(免安装),评估版水印已消除。
支持.NET版本2.03.54.04.54.5.14.64.6.2;
支持架构X64X86;
支持开发WinformWPFUWPWindowsStore。
2023/11/4 16:20:34 207.76MB TeeChart .NET VS2017 DLL
1
第1章绪论1.1合成孔径雷达概况1.2发展历程1.2.1国外SAR发展历程1.2.2我国SAR发展历程1.3发展趋势1.4主要应用1.4.1军事领域1.4.2民用领域1.5内容安排第2章合成孔径雷达2.1概述2.2SAR成像基本原理2.2.1距离向分辨率与脉冲压缩技术2.2.2方位向分辨率与合成孔径原理2.2.3点目标信号回波模型2.2.4SAR成像处理与算法2.3SAR成像的几何特性2.3.1斜距图像的比例失真2.3.2透视收缩与顶底位移2.3.3雷达阴影2.3.4雷达视差与立体观察第3章雷达目标电磁散射计算3.1概述3.1.1电磁散射基本计算方法3.1.2严格的经典解法3.1.3近似求解方法3.2等效电磁流计算3.2.1等效电磁流奇异性的消除3.2.2等效电磁流的分析与计算3.3多次散射的计算3.3.1几何/物理光学混合算法3.3.2存在多重散射的条件和遮挡关系的判断3.3.3几何光学/等效电磁流混合算法3.3.4GO/PO混合方法的应用3.4腔体结构电磁散射RCS计算3.4.1复射线近轴近似电磁散射算法3.4.2计算实例3.5复杂目标电磁散射的计算3.5.1复杂目标几何建模3.5.2复杂目标电磁散射混合计算第4章合成孔径雷达图像特征分析4.1概述4.2SAR图像辐射特征4.2.1SAR图像回波强度的概率分布4.2.2辐射分辨率4.3SAR图像噪声特征4.4SAR图像目标几何特征4.4.1点目标4.4.2线目标4.4.3面目标4.5SAR图像灰度统计特征4.5.1幅度特征4.5.2直方图特征4.5.3统计特征4.6SAR图像纹理特征4.6.1方向差分特征4.6.2灰度共现特征4.6.3小波纹理能量特征第5章合成孔径雷达图像分割5.1概述5.2阈值分割法5.2.1基于遗传算法的二维最大熵阈值分割法5.2.2二维模糊熵阈值分割法5.2.3双阈值分割算法5.3基于马尔可夫随机场模型的分割法5.3.1吉布斯MEF分割模型5.3.2吉布斯MRF分割算法5.3.3多尺度MRF图像分割5.4基于多尺度几何分析的分割法5.4.1基于Contourlet变换的SAR图像分割5.4.2基于Wedgelet变换的SAR图像分割5.5分割评价方法5.5.1分割质量评价5.5.2适用情况分析第6章合成孔径雷达图像目标分类6.1概述6.1.1分类流程6.1.2评价标准6.2概率密度函数估计6.2.1单-密度函数6.2.2混合密度函数6.2.3有限混合密度函数的逼近能力6.3参数估计6.3.1极大似然估计6.3.2EM算法6.4最小距离分类法6.5最大后验概率分类法6.6支持向量机分类法6.6.1支持向量机原理6.6.2支持向量机分类法6.7隐马尔可夫优化分类法6.7.1HMM原理6.7.2HMOC模型第7章合成孔径雷达图像目标识别7.1概述7.1.1识别方法7.1.2自动目标识别系统7.2基于电磁特性的目标识别7.3典型目标识别7.3.1道路识别7.3.2机场识别7.3.3MSTAR坦克识别第8章合成孔径雷达图像融合8.1概述8.1.1图像融合概念8.1.2融合效果评价8.2SAR图像与可见光图像融合8.2.1提升小波变换8.2.2基于提升小波变换区域统计特性的融合算法8.3SAR图像与多光谱图像融合8.3.1主成分分析方法8.3.2基于主成分分析的SAR与多光谱图像融合8.4多波段SAR图像融合8.4.1基于atrous算法方向滤波器组的多波段SAR图像灰度融合8.4.2多波段SAR图像伪彩色融合第9章合成孔径雷达图像压缩9.1概述9.1.1第一代和第二代压缩技术9.1.2多尺度方向分析技术9.2SAR图像压缩中的典型特征9.2.1纹理特征9.2.2变换域系数统计特征9.3SAR图像Non-SWMDA压缩方法9.3.1不可分离小波的提升实现9.3.2基于块分割的二叉树编码方案设计9.4SAR图像压缩效果评价9.4.1保真度准则9.4.2特征衡量标准
2023/10/25 11:11:44 43.18MB 合成孔径雷达 雷达成像 SAR成像
1
战场真正的大逃杀游戏。
由Phaser3和Colyseus打造的Battlearena-battefield荣誉是其顿悟中的生存游戏,它将地图未知地方的玩家召集在一起,并迫使他们为生存而战。
它来自或等热门游戏的概念技术信息我们的游戏前端是在开发的-一个js框架,使我们能够以更少的压力构建HTML5游戏。
我们的游戏后端是使用完成的,该NodeJS使用来实现功能强大的多人游戏服务器。
游戏中的声音,图像资产均来自各种互联网资源(全部开源)游戏地图是使用TiledMapEditor(平铺地图编辑器)绘制的,后者是绘制游戏地图的强大工具。
我们已经实施的地图在游戏中的显示。
即使在移动时,播放器的运动及其旋转也会根据鼠标的位置而变化。
客户端和服务器之间的连接使我们能够:在玩家之间发送消息,以查看谁,谁死了,谁刚参加了聚会,谁离开了聚会等服务器发送有关一些关键信息的更新,例如地图上其他玩家的位置玩家发射子弹并与其他玩家发生碰撞以消除子弹。
显示特定玩家淘汰了多少玩家的得分。
我们仍然需要实施在游戏中播放时的SoundTrack。
游戏的音效(子弹射
2023/10/25 3:37:54 16.06MB phaser top-down colyseus shooting-game
1
关于消除左递归的文法及代码
2023/10/17 22:38:03 10.78MB 消除左递归
1
软件功能特色:AI自动调整借助人工智能技术,立即对图像中的颜色和对比度进行优化。
轻松删除照片背景只需单击几下即可进行替换或删除图像研究背景。
AI旧照片修复还原几十年前拍的照片。
消除断线,污渍等轻微缺陷。
消除扫描中的图像噪声。
黑白照片自动着色。
100多种效果和滤镜无论原始效果如何,都可以从各种效果中进行选择并创建醒目的图像。
质量清晰度调整恢复工作细节,使整个网络图片准备好从屏幕弹出。
增加清晰度以消除这种模糊。
使用过程中我们的Mac照片编辑器精确管理控制系统图像。
坚固的物体去除无论原始状态如何,您都可以擦除不需要的对象并获得完美的照片。
Picverse将非常小心地通
2023/10/14 13:32:43 56MB 抠图 美化 复原图片 AI
1
CTO在考察人员之列,考察活动如期成行(7月底之前);
考察期间不出现任何内容失误(如没有高层领导接待,样板点无法参观等),后勤失误不超过1次(如因车辆、签证等问题导致考察不能完全按照时间表进行);
客户考察之后消除了疑虑,认可我司的供货、研发和工程管理能力(客户有明确的正面意见反馈),支持我司后续项目实施(N项目按照双方共同达成的时间表实施);
考察费用不超过预算(20万元)则项目成功。
2023/10/12 19:24:08 16KB shouqian
1
通过分析车牌图片,采用合适的图像增强方法获得较为清晰的图片;
利用二值形态学消除干扰,获得目标图像(车牌号,包括数字和字母)
2023/9/25 4:50:15 70KB 车牌识别 MATLAB
1
根据布里渊光纤环形激光器谐振腔特性,设计了一套以单片机为控制中心,压电陶瓷(PZT)为调频器件的光纤环形激光器稳频系统。
采用“数值均值滤波”的思想,消除外界因素的影响,提高了鉴频精度;采用“等步长调节,小步长跟踪”控制方法,可在保证跟踪速度的基础上提高控制精度。
由于控制步长非常小,系统不易产生控制振荡,因而不易失锁。
应用设计的光纤环形激光器稳频系统完成了对布里渊环形激光器的稳频锁定实验,鉴频时间达到500μs,锁定精度达到士0.5MHz,锁定时间约为30min。
2023/9/23 12:01:09 946KB 光纤光学 布里渊环 直流稳频
1
“合成大西瓜”小游戏能够爆红,很大程度上得益于简单的玩法:玩家只需要移动不断下落的水果,使其与相同的水果合成体积更大的新水果,等到堆积的水果越过屏幕上方的红线,游戏便结束。
在各种社交平台上,大方的玩家们纷纷把关于“合成大西瓜”攻略的相关问题顶上热榜。
而这些成功经验,其实早在“俄罗斯方块”等红遍全球的始祖级休闲游戏上得以验证:通过不断下落的方块营造焦虑感,借助不断消除的方块带来“有序”的快感。
2023/9/21 13:57:04 16.86MB 小游戏
1
电子商务系统是由吉林省明日科技有限公司开发,程序的主要目的就是通过网站来推广互联企业的产品和服务,并使客户随时可以了解企业和企业的产品,为客户提供在线服务和订单处理功能。
从长期的战略目标来说,网站不仅仅是产品和服务的推广,而是通过Internet、企业内部网(Intranet)和企业外部网(Extranet),将买家与卖家、厂商和合作伙伴紧密结合在了一起,因而消除了时间与空间带来的障碍。
1
共 303 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡