硬件工程师手册目录第一章概述第一节硬件开发过程简介§1.1.1硬件开发的本过程§1.1.2硬件开发的规范化第二节硬件工程师职责与基本技能§1.2.1硬件工程师职责§1.2.2硬件工程师的基本素质与技能第二章硬件开发规范化管理第一节硬件开发流程§2.1.1硬件开发流程文件介绍§2.1.2硬件开发流程详解第二节硬件开发文档规范§2.2.1硬件开发文档规范文件介绍§2.2.2硬件开发文档编制规范详解第三节与硬件开发相关的流程文件介绍§2.3.1项目立项流程§2.3.2项目实施管理流程§2.3.3软件开发流程§2.3.4系统测试工作流程§2.3.5中试接口流程§2.3.6内部验收流程第四节PCB投板流程(陆波写)§2.4.1PCB投板系统文件介绍§2.4.2PCB投板流程详解第三章硬件设计技术规范第一节CAD辅助设计(陆波写)§3.1.1ORCAD辅助设计软件§3.1.2Cadence简介第二节可编程器件的使用§3.2.1PPGA产品性能和技术参数§3.2.2FPGA的开发工具的使用§3.2.3EPLD产品性能和技术参数§3.2.4Max+PLUSII开发工具§3.2.5VHDL语言第三节常用的接口及总线设计§3.3.1接口标准§3.3.2串口设计§3.3.3并口及总线设计§3.3.4RS-232接口总线§3.3.5RS-422和RS-423标准接口连接方法§3.3.6RS-485标准接口与联接方法第四节单板硬件设计指南§3.4.1电源滤波§3.4.2带电插拨座§3.4.3上下接电阻§3.4.4LD的标准电路§3.4.5高速时钟线设计§3.4.6接口驱动及支持芯片§3.4.7复位电路§3.4.8Watchdog电路§3.4.9单板调试端口设计及常用仪器第五节逻辑电平设计与转换§3.5.1TTL、ECL、PECL、CMOS标准§3.5.2TTL、ECL、MUSII连为电平转换第六节母板设计指南§3.6.1公司常用母板简介§3.6.2高速传输线理论与设计§3.6.3总线阻抗匹配、总线驱动及端接§3.6.4布线策略与电磁干扰第七节单板软件开发§3.7.1常用CPU介绍§3.7.2开发环境§3.7.3单板软件调试§3.7.4编程规范第八节硬件整体设计§3.8.1接地设计§3.8.2电源设计§3.8.3防雷与保护第九节时钟、同步与时钟分配§3.9.1时钟信号的作用§3.9.2时钟原理及性能指标测试第十节DSP开发技术§3.10.1DSP概述§3.10.2DSP的特点与应用yf-f4-06-cjy§3.10.3TMS320C54XDSP的结构第四章常用通信协议及标准第一节国际标准化组织§4.1.1ISO§4.1.2CCITT及ITU-T§4.1.3IEEE§4.1.4ETSI§4.1.5ANSI§4.1.6TIA/EIA§4.1.7BellCore第二节硬件开发常用通信标准§4.2.1ISO开放系统自联模型§4.2.2CCITTG系列建议§4.2.3I系列标准§4.2.4V系列标准§4.2.5TIA/EIA系列接口标准§4.2.6CCITTX系列建议§4.2.7IEEE常用标准第五章物料选型与申购(物料部)第一节物料选型的基本原则§5.1.1常用物料选型的基本原则§5.1.2专业物料选型的基本原则第二节IC的选型§5.2.1IC的常用技术指标§5.2.2常用IC选型举例第三节阻容器件的选型§5.3.1电阻器的选型§5.3.2电容器的选型§5.3.3电感器的选型§5.3.4电缆及接插件标准与选用第四节物料申购流程§5.4.1物料流程文件介绍§5.4.2物料流程详解§5.4.3物料申购案例分析第五节接触供应商须知第六节MRPII及BOM基础和使用第六章实验室第一节中央研究部实验室管理条件第二节中研部实验室环境检查评分细则附录一硬件开发流程符录二PCB技术板流程符录三硬件文档编写规范FPGA归档要求硬件EMC设计规范
2024/12/21 0:55:02 942KB 华为 硬件 工程师
1
自己花钱买的电子书,高清完整版!很实用的教材,读起来一点也不晦涩。
目录译者序前言第1章概论1.1推动因素1.2基本计算机组成1.3分布式系统的定义1.4我们的模型1.5互连网络1.6应用与标准1.7范围1.8参考资料来源参考文献习题第2章分布式程序设计语言2.1分布式程序设计支持的需求2.2并行/分布式程序设计语言概述2.3并行性的表示2.4进程通信与同步2.5远程过程调用2.6健壮性第3章分布式系统设计的形式方法3.1模型的介绍3.1.1状态机模型3.1.2佩特里网3.2因果相关事件3.2.1发生在先关系3.2.2时空视图3.2.3交叉视图3.3全局状态3.3.1时空视图中的全局状态3.3.2全局状态:一个形式定义3.3.3全局状态的“快照”3.3.4一致全局状态的充要条件3.4逻辑时钟3.4.1标量逻辑时钟3.4.2扩展3.4.3有效实现3.4.4物理时钟3.5应用3.5.1一个全序应用:分布式互斥3.5.2一个逻辑向量时钟应用:消息的排序3.6分布式控制算法的分类3.7分布式算法的复杂性第4章互斥和选举算法4.1互斥4.2非基于令牌的解决方案4.2.1Lamport算法的简单扩展4.2.2Ricart和Agrawala的第一个算法4.2.3Maekawa的算法4.3基于令牌的解决方案4.3.1Ricart和Agrawala的第二个算法4.3.2一个简单的基于令牌环的算法4.3.3一个基于令牌环的容错算法4.3.4基于令牌的使用其他逻辑结构的互斥4.4选举4.4.1Chang和Roberts的算法4.4.2非基于比较的算法4.5投标4.6自稳定第5章死锁的预防、避免和检测5.1死锁问题5.1.1死锁发生的条件5.1.2图论模型5.1.3处理死锁的策略5.1.4请求模型5.1.5资源和进程模型5.1.6死锁条件5.2死锁预防5.3一个死锁预防的例子:分布式数据库系统5.4死锁避免5.5一个死锁避免的例子:多机器人的灵活装配单元5.6死锁检测和恢复5.6.1集中式方法5.6.2分布式方法5.6.3等级式方法5.7死锁检测和恢复的例子5.7.1AND模型下的Chandy,Misra和Hass算法5.7.2AND模型下的Mitchell和Merritt算法5.7.3OR模型下的Chandy,Misra和Hass算法第6章分布式路由算法6.1导论6.1.1拓扑6.1.2交换6.1.3通信类型6.1.4路由6.1.5路由函数6.2一般类型的最短路径路由6.2.1Dijkstra集中式算法6.2.2Ford的分布式算法6.2.3ARPAnet的路由策略6.3特殊类型网络中的单播6.3.1双向环6.3.2网格和圆环6.3.3超立方6.4特殊类型网络中的广播6.4.1环6.4.22维网格和圆环6.4.3超立方6.5特殊类型网络中的组播6.5.1一般方法6.5.2基于路径的方法6.5.3基于树的方法第7章自适应、无死锁和容错路由7.1虚信道和虚网络7.2完全自适应和无死锁路由7.2.1虚信道类7.2.2逃逸信道7.3部分自适应和无死锁路由7.4容错单播:一般方法7.52维网格和圆环中的容错单播7.5.1基于局部信息的路由7.5.2基于有限全局信息的路由7.5.3基于其他故障模型的路由7.6超立方中的容错单播7.6.1基于局部信息的模型7.6.2基于有限全局信息的模型:安全等级7.6.3基于扩展安全等级模型的路由:安全向量7.7容错广播7.7.1一般方法7.7.2使用全局信息的广播7.7.3使用安全等级进行广播7.8容错组播7.8.1一般方法7.8.2基于路径的路由7.8.3使用安全等级在超立方中进行组播第8章分布式系统的可靠性8.1基本模型8.2容错系统设计的构件模块8.2.1稳定存储器8.2.2故障-停止处理器8.2.3原子操作8.3节点故障的处理8.3.1向后式恢复8.3.2前卷式恢复8.4向后恢复中的问题8.4.1检查点的存储8.4.2检查点方法8.5处理拜占庭式故障8.5.1同步系统中的一致协议8.5.2对一个发送者的一致8.5.3对多个发送者的一致8.5.4不同模型下的一致8.5.5对验证消息的一致8.6处理通信故障8.7处理软件故障第9章静态负载分配9.1负载分配的分类9.2静态负载分配9.2.1处理器互连9.2.2任务划分9.2.3任务分配9.3不同调度模型概述9.4基于任务优先图的任务调度9.5案例学习:两种最优调度算法9.6基于任务相互关系图的任务调度9.7案例学习:域划分9.8使用其他模型和目标的调度9.8.1网络流量技术:有不同处理器能力的任务相互关系图9.8.2速率单调优先调度和期限驱动调度:带实时限制的定期任务9.8.3通过任务复制实现故障安全调度:树结构的任务优先图9.9未来的研究方向第10章动态负载分配10.1动态负载分配10.1.1动态负载分配的组成要素10.1.2动态负载分配算法10.2负载平衡设计决策10.2.1静态算法对动态算法10.2.2多样化信息策略10.2.3集中控制算法和分散控制算法10.2.4移植启动策略10.2.5资源复制10.2.6进程分类10.2.7操作系统和独立任务启动策略10.2.8开环控制和闭环控制10.2.9使用硬件和使用软件10.3移植策略:发送者启动和接收者启动10.4负载平衡使用的参数10.4.1系统大小10.4.2系统负载10.4.3系统交通强度10.4.4移植阈值10.4.5任务大小10.4.6管理成本10.4.7响应时间10.4.8负载平衡视界10.4.9资源要求10.5其他相关因素10.5.1编码文件和数据文件10.5.2系统稳定性10.5.3系统体系结构10.6负载平衡算法实例10.6.1直接算法10.6.2最近邻居算法:扩散10.6.3最近邻居算法:梯度10.6.4最近邻居算法:维交换10.7案例学习:超立方体多计算机上的负载平衡10.8未来的研究方向第11章分布式数据管理11.1基本概念11.2可串行性理论11.3并发控制11.3.1基于锁的并发控制11.3.2基于时戳的并发控制11.3.3乐观的并发控制11.4复制和一致性管理11.4.1主站点方法11.4.2活动复制11.4.3选举协议11.4.4网络划分的乐观方法:版本号向量11.4.5网络分割的悲观方法:动态选举11.5分布式可靠性协议第12章分布式系统的应用12.1分布式操作系统12.1.1服务器结构12.1.2八种服务类型12.1.3基于微内核的系统12.2分布式文件系统12.2.1文件存取模型12.2.2文件共享语义12.2.3文件系统合并12.2.4保护12.2.5命名和名字服务12.2.6加密12.2.7缓存12.3分布式共享内存12.3.1内存相关性问题12.3.2Stumm和Zhou的分类12.3.3Li和Hudak的分类12.4分布式数据库系统12.5异型处理12.6分布式系统的未来研究方向附录DCDL中的通用符号列表
2024/12/20 22:56:08 29.64MB 分布式系统设计 jie wu著 高传善
1
切片过程1)开始切片过程,在Unity编辑器顶部选择地形选项,然后单击“切片地形”选项。
一个窗口会出现一些配置信息。
2)拖动您希望分割为“地形切片”字段的地形。
或者,如果您在步骤1中单击“切片地形”选项时选择了地形,则该字段中已经出现了地形。
3)输入每个补丁的详细分辨率。
优选地,该值应与每个补丁值的基本地形细节分辨率匹配。
这些信息不能通过脚本访问,这就是为什么你必须在这里输入它。
您可以输入与基础地形设置不同的值,但这将导致细节网格(植物和草地)复制的准确性降低。
4)选择您希望结束的切片维度。
2×2仅仅意味着基本地形将沿着X轴2次和Z轴2次分割,以创建4个地形片。
64×64未经测试,不建议使用,所以请自行承担风险。
5)设置希望存储地形数据的文件路径。
默认情况下,这是资产/terrainslicing/地形数据。
如果您希望暂时在另一个文件夹中创建地形数据,只需在这里输入新路径。
如果希望永久更改默认文件夹,请输入新的文件路径,并选择“保存当前文件路径作为默认文件路径”按钮。
请确保没有“/”后的文件路径上的文件夹名称(例如,用于文件的默认路径的地形数据后),否则将会出现错误。
6)当单击“创建地形”按钮时,选择是否覆盖现有的地形数据。
这是一个安全功能,以确保你不小心覆盖的地形数据,你已经创造了。
如果试图在未选中此值时重写数据,则会出现警告消息,告诉您要检查此值,而切片操作将不会开始。
7)单击“创建地形”按钮,等待进度条填充。
如果进度条未显示,则在编辑器窗口显示通知错误的通知消息。
有时您可能需要检查控制台以获得更详细的信息。
最后,确保只在编辑模式下执行切片地形脚本。
2024/12/20 22:50:14 1.84MB Unity Terrain
1
#include#include#include#includeusingnamespacestd;intw=0;//尾数累加器intp=0;//指数累加器intj=0;//十进制小数位数计数器inte=1;//用来记录十进制数的符号,当指数为正时为1,为负时为-1inti=0;//用来标志元素位置intd=0;//用来表示每个数值型元素对应的数值constintN=40;//用来确定输入识别符的最大长度chardata[N];//存放输入的识别符boolis_digit;//标志是否是数字stringCJ1;//确定是整形还是实型doubleCJ2;//记数值//函数声明voidcheck(charc);//检查首字母是否是数字的函数voiddeal_integer(charc);//处理识别符的整数部分voiddeal_point(charc);//用来处理小数部分voiddeal_index(charc);//用来处理指数部分voids_next();//确定实型voidz_next();//确定整型voidlast();//计算CJ2voiderror();//程序中错误处理程序voiddeal();//处理函数主体intmain(){//主函数coutdata;deal();//处理函数主体last();//计算CJ2system("pause");return0;}voidcheck(charc)//判断输入的首字母是否是数字{is_digit=isdigit(c);while(is_digit!=true){//输入的首字母不是数字时coutdata;check(data[0]);}}voiddeal_integer(charc){//处理识别符的整数部分d=(int)c-48;w=w*10+d;i++;if(isdigit(data[i])!=0)//下一个仍是数值时,调用程序本身deal_integer(data[i]);}voiddeal_point(charc){//用来处理小数部分inttemp=i;if(isdigit(c)!=0)//是数值字符时deal_integer(c);else{error();//错误处理程序deal();//处理函数主体}j=i-temp;//记录十进制小数位数}voiddeal_index(charc){//用来处理指数部分if(c=='-'){e=-1;i++;}//是'-'号时else{if(c=='+')i++;//是'+'号时else{if(isdigit(c)==false)//非数值字符时{error();//错误处理程序deal();//处理函数主体}else
2024/12/19 11:09:24 33KB 无符号数的词法分析程序
1
精准农业-IOT-2018介绍:精确耕种被定义为特定地点的农田管理,利用现代技术来增加农作物的产量。
借助传感器和卫星图像,农民可以明智地使用其资源。
这样,整个农作物生产过程既有利可图又可持续。
这种智能农业管理的基础是AI和IOT。
例如,土壤传感器收集静态和动态数据,以分析和检查农作物的营养和水分需求。
借助IOT移动应用程序,农民可以了解其耕作实践中所使用和节约的水。
此外,智能灌溉解决方案无需农户亲自到田间就可以为农作物供食。
同样,机器学习分析和算法通过分析作物的需水量也能够准确检测和控制害虫。
所有这些技术共同构成了精准农业的核心。
这些决定因素助长了作物的生产周期,从而使农民的投资回报率最大化。
项目提交给SmartIndiaHackathon的项目工作由BNest2018组织:我们参加了Hackathon,我们成功进入了印度各地的前20名团队。
农业为印
2024/12/19 9:35:34 6.17MB PHP
1
标题“win7MINI2440USB下载驱动”指的是为MINI2440开发板在Windows7操作系统上安装USB驱动的过程。
MINI2440是一款基于SamsungS3C2440处理器的嵌入式开发板,常用于教学、实验和产品研发。
在使用MINI2440时,我们需要在主机PC上安装相应的驱动程序以便通过USB接口与开发板进行通信。
描述中的链接提供了一个详细的教程,虽然已经失效,但根据常见流程,我们可以推断出以下步骤:1.**环境准备**:确保你的PC运行的是Windows7系统,并且具备USB连接功能。
确保MINI2440开发板已正确连接到电脑的USB端口。
2.**驱动安装**:通常情况下,Windows系统会尝试自动识别并安装驱动,但MINI2440可能需要特定的驱动。
如果没有自动安装,你需要手动操作。
3.**获取驱动**:通常,驱动程序可以从开发板制造商的官方网站或开源社区如CSDN找到。
在本例中,驱动可能包含在名为“SuperVivi-Transfer-Tool-Complete”的压缩包文件中。
这个工具可能包含了USB驱动和其他辅助软件,用于数据传输或设备管理。
4.**解压文件**:你需要下载并解压缩“SuperVivi-Transfer-Tool-Complete”。
这一步将得到包含驱动在内的所有必要文件。
5.**安装驱动**:进入解压后的文件夹,找到适用于Windows7的驱动程序文件(通常是.exe或.inf格式)。
双击运行安装程序,按照提示完成驱动安装。
6.**设备管理器**:如果Windows未能自动识别MINI2440,你可以在“设备管理器”中查找未知设备,然后手动更新驱动,指向刚刚解压的驱动文件夹路径。
7.**测试连接**:安装完成后,重新启动电脑或刷新设备管理器,检查MINI2440是否被正确识别。
你可以尝试通过USB接口向开发板传输文件,验证驱动安装是否成功。
8.**故障排查**:如果遇到问题,如驱动无法安装或设备无法识别,可以检查USB线是否正常,或者查阅教程和社区论坛寻找解决方案。
在嵌入式开发中,正确安装和配置驱动至关重要,因为它直接影响到主机与开发板之间的通信效率和稳定性。
对于MINI2440这样的嵌入式系统,理解并掌握USB驱动的安装方法是提升工作效率的关键。
在实践中,还应注意保持驱动程序的更新,以确保兼容性和性能。
2024/12/15 19:11:22 2.54MB mini2440
1
【联想G470BIOS】是针对联想G470系列笔记本电脑的固件更新程序,主要负责管理计算机的基本输入输出系统(BIOS)。
BIOS是计算机硬件和操作系统之间的一个关键接口,它控制着系统启动流程、硬件设备驱动以及系统的一些基本功能。
在联想G470上,BIOS的更新对于优化系统性能、增强硬件兼容性、修复已知问题以及提升安全性至关重要。
BIOS的主要功能包括:1.自检与初始化:在计算机开机时执行POST(Power-OnSelfTest)以检查硬件是否正常。
2.引导加载:负责从硬盘、光驱、USB设备等启动媒介加载操作系统。
3.设备驱动:为系统提供基本的硬件控制,如键盘、鼠标、显示器等。
4.系统设置:通过BIOS设置程序允许用户更改硬件配置,如内存频率、硬盘模式、启动顺序等。
5.安全功能:包括密码保护、BIOS锁定等,防止非法访问和修改。
【la-6751pg470南桥.bin】这个文件名中,“la-6751p”可能是指联想G470所使用的南桥芯片型号,南桥芯片是主板上的一个重要组成部分,它管理着I/O(输入/输出)接口,如USB、SATA、PCI-E、网络等。
"g470"再次强调了这是针对联想G470系列的设备,而".bin"是二进制文件的通用扩展名,通常用于表示BIOS或固件更新文件。
南桥芯片的更新可能涉及到以下方面:1.性能提升:新版本的南桥可能会优化I/O通道,提高数据传输速度。
2.兼容性增强:解决与新设备的连接问题,比如新的USB标准或SATA接口。
3.稳定性改进:修复可能导致系统崩溃或蓝屏的bug。
4.新功能添加:例如支持新的硬件标准,如Wi-Fi或蓝牙模块。
5.安全性更新:修补可能存在的安全漏洞,防止恶意攻击。
更新BIOS或南桥固件需谨慎操作,因为错误的过程可能导致系统无法启动。
一般来说,这需要一个可引导的介质(如USB或光盘)和遵循制造商提供的详细步骤。
同时,确保在更新前备份重要数据,因为固件更新过程中断可能会导致数据丢失。
总结来说,联想G470BIOS的更新对于保持电脑的稳定性和安全性至关重要。
南桥固件更新则侧重于改善硬件兼容性、性能和安全性,确保电脑能更好地适应不断变化的外部设备和技术环境。
正确地进行这些更新,可以显著提升用户使用体验。
2024/12/14 12:30:30 1.66MB 联想G470 BIOS
1
因服务器部署,需将原2000SERVER上的共享文件转移到另一2003SERVER中,因文件夹权限设置比较复杂,故从微软官方网站下载了FSMT工具,安装要求得先安装.NETFramework2.0以上版本,然后就是安装FSMT工具了,将FSMT安装在2003SERVER中,完成之后运行FSMT,新建项目,指定存储记录的位置,省略DFS,指定迁移的目标位置(如E:),然后是加入服务器,输入2000SERVER名称确定,此时2000SERVER下的共享文件夹就都出来了,选择要转移的共享文件夹,然后是继续,一直到文件迁移完成,还可以查看迁移过程中有没错误。
当然还可以使用备份的方法(BackupExce、BES)DFS……例如:用NTBackup备份后再恢复至目标盘上,文件权限也不改变,具体操作我没实际操作过,感觉所花费的时间相对FSMT要长些。
成功案例、具体操作如下:网上转接目的:把在DC上的文件服务器,迁移到一台成员服务器.环境如下:先在DC上创建用户a,建立共享文件夹share,在共享文件夹的子文件夹赋与a权限做成个人文件夹.在share文件夹上给everyone共享权限是更改,NTFS权限如图.子文件夹权限也如下目的是用于验让权限的转移.a文件夹放一些文件.建立完了一个文件服务器,接下来就是把权限内容转移到成员服务器啦.现在到成员服务器以administrator的身份登录,安装FSMT工具包.输入使用信息,安装类型.安装成功.打开FSMT用于迁移文件服务器的工具,还可用于DFS,在这里我就不详细介绍.打开以后,如图,弹出一个欢迎向导,创建一个用于保存转移文件服务器日志的位置,名称.去掉DFS按钮,因为我没用到DFS.输入保存文件服务器的新位置,会以DC的FQDN作为文件夹,完成向导.这时候就可以做转移的操作啦,选择要转移的服务器,转移的文件夹.就是DC的FQDN名称,共享文件夹share.接着按继续,执行下一步的操作.检查完,准备复制.最后签定,弹出警告信息,说之前的共享将会被停掉,进行转移工作.成功转移,按报告可以看到更多信息结果如下:在C盘生成文件夹.权限验证.子文件夹权限以及文件.Ok,到这里就结束了,一切看起来都很美妙。
不过需要注意的是,此工具是迁移域环境下的文件服务器,其他环境不实用。
2024/12/6 16:02:04 1.31MB FSMT 文件服务迁移工具
1
SublimeText是一个代码编辑器(SublimeText2是收费软件,但可以无限期试用),也是HTML和散文先进的文本编辑器。
SublimeText是由程序员JonSkinner于2008年1月份所开发出来,它最初被设计为一个具有丰富扩展功能的Vim。
SublimeText具有漂亮的用户界面和强大的功能,例如代码缩略图,Python的插件,代码段等。
还可自定义键绑定,菜单和工具栏。
SublimeText的主要功能包括:拼写检查,书签,完整的PythonAPI,Goto功能,即时项目切换,多选择,多窗口等等。
SublimeText是一个跨平台的编辑器,同时支持Windows、Linux、MacOSX等操作系统。
2024/11/30 13:32:55 13.8MB Vim 代码缩略图 Python插件
1
期末软件工程课程设计【自动售货机】:自动售货机系统是一种无人售货系统。
售货时,顾客把硬币投入机器的投币口中,机器检查硬币的大小、重量、厚度及边缘类型。
有效的硬币是一元币、五角币、一角币、五分币和一分币。
其它货币都被认为是假币。
机器拒收假币,并将其从退币孔退出。
当机器接收了有效的硬币之后,将之送入硬币储藏器。
顾客支付的货币根据硬币的面值进行累加。
  自动售货机装有货物分配器,每个分配器中包含0个或多个价格相同的货物。
顾客通过选择货物分配器来选择货物。
如果有货,且顾客支付的货币值不小于该货物的价格,货物将被分配到货物传送孔送给顾客,并将找零返回到退币孔。
如果无货,则和顾客支付的货币值相等的硬币将被送到退币孔。
如果顾客支付的货币值小于所选货物的价格,机器将等待顾客投进更多的货币。
如果顾客决定不买所选择的货物,他投放进的硬币将从退币孔中退出。
1
共 976 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡