方案一个付与数字电路实现,对于时,分,秒.数字展现的计时装置,周期为24小时,展现满刻度为23时59分59秒,并具备校时成果以及报时成果的数字电子钟。
电路首要付与中规模集成电路.本体系的方案电路由脉冲逻辑电路模块、时钟脉冲模块、时钟译码展现电路模块、整电报时模块、校时模块等部份组成。
付与电池作电源,付与低功耗的芯片及液晶展现器,暴发器使用石英晶振、计数振荡器CD4060及双D触发器74LS74,计数器付与同步双十进制计数器74LS160,锁存译码器是74LS248,整电报时电路用74LS74,74LS32及扬声器组成。
1
/* CX20106A超声波发送与接受法度圭表标准 40KHz脉冲由单AT89S52单片机P1.0口送出,由P3.2(INT0)付与中断方式付与。
按时器0,按时器1中断方式责任,T1为8位自动重装方式(按时12.5us),T0为16位按时器(按时约65ms) 超声波接受付与内部中断INT0,接受到返回脉冲后,在内部中断法度圭表标准中计算距离。
65ms超声波传布距离约65×10^(-3)× 340m/s=22.1m,距离足够了,远超CX20106A的丈量规模。
40KHz对于应波周期T=1/40KHz=25us,方波高占空比50%,上下电平宽度分别占0.5T=12.5us。
按时器T1付与8位自动重装方式(按时12.5us),在单片机付与12MHz晶振的前提下,(2^8-X)×12/12us=12.5us (1)当X=0xF3时,2^8-X=13,(2)当X=0xF4时,2^8-X=12, 所以,取X=0xF3,0xF4均能够满足计时申请。
距离表普通4位数码管上,单元为cm。
*//*单片机P2口接74HC138(三八译码器)P2.3--74HC138:/EI、P2.2--74HC138:A二、P2.1--74HC138:A一、P2.0--74HC138:A0译码器输入Y0,Y一、Y二、Y三、Y四、Y五、Y六、Y7均低电平实用,分别选通1~8个数码管。
搜罗2个四位一体数码管LG3641BH,共2x4=8个数码管。
数码管数据口为P0口。
数码管为共阳4位一体数码管。
成果:译码器输入为1——8个数码管的段选信号,轮流遴选1——8数码管。
dispaly(uintd)将d(distance)的千、百、十、个按次表普通1~3号数码管上。
展现原理: 一、送出要展现的段数 二、P2译码,选摘要展现的位 三、延时1——2ms,功夫不能过长,不然会闪灼,也不能过短,不然会很暗。
四、作废段选,消隐! 若要展现多段,重复以上4步!*/
2023/4/28 6:54:01 1.73MB CX20106A 超声波 测距 keil
1
《智能电网本领》刘振亚
2023/4/21 19:03:24 34.15MB 智能电网技术
1
《JavaEE互联网轻量级框架整合开拓――SSM框架(SpringMVC+Spring+MyBatis)以及Redi》java电子书推选理由:本书首要分为6个部份,第1部份对于Java互联网的框架以及首要波及的方式做末了简介;
第2部份报告MyBatis本领;
第3部份报告Spring底子(搜罗IoC、AOP以及数据库使用),重点教学Spring数据库事件使用,以满足互联网企业的使用申请;
第4部份,报告SpringMVC框架;
第5部份,经由Spring本领的使用,教学Redis本领;
第6部份,教学SSMRedis实际使用,经由互联网高并发如抢票、抢红包等场景,使用全表明的方式教学SSM框架的整合,以及高并发与锁的使用以及体系成果优化。
作者:杨开振出书社:电子产业出书社出书功夫:2017-07-10附件为网盘链接及密码。
2023/4/21 14:28:27 489B 百度网盘下载 SSM
1
matlab实现模态阐发的代码,行使拟合圆法,求三阶固有频率、阻尼比,盘算各阶主振型,求频响函数的实频、虚频、幅频、相频
2023/4/21 7:43:09 3KB 模态分析 matlab
1
STM32F407串口配置配备枚举基于CubeMx的STM32F407串口代码:6各串口均已经启用DMA及空隙中断,反对于不定长度数据付与;
可经由CubeMx裁剪串口数目,裁剪后惟独编译时删去极大批与删去硬件资源相关的代码就可移植使用;
默许使用片外8M晶振,可在CubeMx变更。
2023/4/19 0:26:47 581KB STM32F407 UART UART1UART6
1
基于CCSv7的CC2640R2F亮灯以及无内部32K晶振例程
2023/4/14 15:15:18 5.89MB RCOSC_LF+LED CC2640R2F
1
起首知道,零中频能够说是一种本领,引伸进去零中频电路,再引零中频电路进去的信号(零中频信号I,Q)中频变频模块(确凿的说零中频变频模块)搜罗第二本振信号、混频器、低通滤波器以及放大器。
输入的中频信号起首被移相90°成为两路正交信号,再与从频率剖析器来的第二本振信号及其90°移信托号(在其内部,留意经由小数分频,让你感应13-13便是0了吧)举行混频输入以患上到发真个语音信号(与普通的混频器不合,在正交直接混频处置之后的信号即为模拟基带I/Q信号。
2023/4/13 20:25:19 126KB IQ正交调制 频谱利用
1
该文档是激光振镜(搜罗扫描与打标)的模拟电路的原理图,详尽参数其中也有标识。
2023/4/7 18:30:23 110KB hardware galvanometer
1
依据激光多普勒测振本领举行声光通讯的责任原理,方案一种新型、小型激光多普勒测振信号鉴频电路。
该电路依据外差探测原理,当地振荡器输入信号与探测信号混频患上到一起信号,经90°移相后的当地振荡器输入信号再与探测信号混频患上到另一起信号,行使这两路信号患上到了多普勒频移量以及声源振动的频率。
行使扬声器激发的水面模拟振源举行试验,评释该电路可实用丈量的振动频率规模为300Hz~10kHz,证实可用于水下光声通讯。
2023/4/6 20:09:12 690KB 测量 激光多普 声光通信
1
共 221 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡