随着生活水平的不断提高,汽车成为人们生活不可或缺的一部分。
汽车总量的不断攀升造成城市交通拥堵不堪,伴随而来是频发的交通事故。
在这个背景下智能交通越来越受到人们的关注,与此相关的目标检测技术的研究也得到很大的关注,车辆检测就是其中一个关键的组成部分。
车辆检测由于其本身具有的挑战性,例如车辆形状的不同,车辆的视角的不同,车辆的遮挡,光照的差异变化,使车辆检测成为一个十分困难的任务。
当前虽然对于车辆检测的研究已经取得一部分的成果,但是现存算法任然具有局限性,在各种环境下无法得到让人满意的效果,因此本文针对车辆检测进行了研究。
本文所做的工作主要包括两个部分:一研究国内外该课题方向的研究现状,对比不同算法的优缺点,研究不同算子提取车辆特征的效果;
二是基于前面的研究实现基于HOG特征与SVM分类器的车辆检测系统,验证研究算法的可行性。
经过车辆检测系统的仿真验证,本文研究的方法可以有效的提取图像中的车辆,效果良好,速度在可接受的范围内。
2023/12/16 11:31:01 43.09MB 智能交通 HOG特征 SVM 车辆检测
1
《红外图像处理、分析与融合》从红外图像的目标特性出发,以红外图像景象匹配、红外目标识别与跟踪、红外图像融合等内容为重点,系统阐述了红外图像处理、分析与融合中的理论、方法和应用技术,涵盖了红外图像应用中涉及的核心内容。
《红外图像处理、分析与融合》是红外图像景象匹配、红外目标识别与跟踪、红外图像融合技术及其应用研究的最新成果总结,内容注重理论与实践并重,针对性与系统性较强。
《红外图像处理、分析与融合》可供信号与信息处理、通信与信息系统、电子科学与技术、计算机科学与技术、控制科学与工程、红外遥感及应用等学科中从事图像处理与分析技术的研究人员和工程技术人员参考,也可作为高等院校相关专业研究生或高年级本科生的参考书。
2023/12/12 7:02:03 21.84MB 红外图像 分析处理 融合
1
《雷达信号处理基础》介绍了雷达系统与信号处理的基本理论和方法,主要内容包括:雷达系统导论、雷达信号模型、脉冲雷达信号的采样和量化、雷达波形、多普勒处理、检测基础原理、恒虚警率检测、合成孔径雷达成像技术、波束形成和空-时二维自适应处理导论。
书中包含了大量反映雷达信号处理最新研究成果和当前研究热点的补充内容,提供了大量有助于读者深入的示例。
2023/12/12 2:11:01 34.82MB 雷达
1
高光谱的端元提取总结,很好。
近年来,通过群智能算法求解组合优化或连续优化问题以实现高光谱图像混合像元分解方面取得了重要进展和显著成果.本文首先回顾了高光谱图像混合像元分解的研究背景和群智能算法的特点,然后梳理了光谱混合模型及对应的最优化模型,进而介绍了基于群智能算法的端元提取和丰度反演方法,最后通过2组实验比较了群智能算法和其他传统算法在端元提取和丰度反演方面的精度,对基于群智能算法的混合像元分解效果进行了评价.另外,本文也对群智能算法在高光谱图像信息提取中应用的优势和存在的问题进行了总结.
2023/11/27 18:06:48 9.66MB 高光谱
1
系统的切换控制稳定性仿真,最新研究成果,网上极少具有很好的参考价值
2023/11/27 5:12:06 4KB tag
1
相信不只是我,用过(或看过)macOS和Windows两个版本Notion客户端的同学,应该都会觉得Windows上的Notion用户「处于水深火热」之中。
Notion的桌面客户端是「网页套壳」的成果,受限于Windows上的ElectronAPI,Notion官方的Windows客户端拥有Windows桌面应用的一切特征:对Notion来说没有什么用处的「工具栏」粗大的Windows老式「滚动条」与Notion整体颜色不符的「标题栏」……不过Notion客户端是用Electron封装的,其样式、布局等和网页的定义方法一致。
因此我们可以通过一些手段对Notion的Windows客户端进行定制,使之更符合我们的审美与使用习惯。
2023/11/26 13:02:51 138KB win10 notion
1
2017最新全国高校数据库信息(包含2854所高校).由于是本人花了很久的时间搞来的劳动成果,再此献给大家。
此文档是Excel格式。
包含:院校名称所在省份所在地区所在城市是否211是否985院校举办(公办/民办)院校类型院校隶属办学类型
2023/11/26 3:15:45 151KB 全国高校信息
1
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。
本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;
*后介绍了无监督学习在基因选择、疾病诊断中的应用。
2023/11/21 9:58:40 86.49MB 机器学习 无监督学习
1
实体关系抽取作为信息抽取、自然语言理解、信息检索等领域的核心任务和重要环节,能够从文本中抽取实体对间的语义关系.近年来,深度学习在联合学习、远程监督等方面上的应用,使关系抽取任务取得了较为丰富的研究成果.目前,基于深度学习的实体关系抽取技术,在特征提取的深度和模型的精确度上已经逐渐超过了传统基于特征和核函数的方法.围绕有监督和远程监督两个领域,系统总结了近几年来中外学者基于深度学习的实体关系抽取研究进展,并对未来可能的研究方向进行了探讨和展望.
2023/11/21 3:24:24 1.85MB 深度学习 实体关系
1
修复了以前上传的bug,大家就不要去下载旧的的版本(分part1和part2的那个),这个有解压密码,可以直接邮件联系我(pengjing.parents@qq.com)该内容里面的很多设计都是我同学的原创,希望大家尊重他人劳动成果,仅参考学习不做他用,未授权的使用后果自负,谢谢!
2023/11/21 0:02:33 34.18MB bmob
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡