可做研究生、本科课程教学与自学,光学软件之一,用于光线追迹,镜头设计,光学系统仿真
2024/2/23 17:01:29 1.83MB ZEMAX
1
总共有9个光学实验用Matlab进行仿真,如有雷同,纯属巧合。
希望大家喜欢Matlab或者光学的,可以好好看看这个资源。
实验的题目分别为:单缝衍射,光栅衍射,矩孔衍射,朗伯余弦体,迈克尔逊干涉,牛顿环,杨氏双缝干涉,圆孔衍射,正选光栅。
2024/2/11 10:37:14 6KB Matlab仿真 光学 实验
1
GovindP.Agrawal著作NonlinearFiberOptics,ThirdEdition&ApplicationsofNonlinearFiberOptics包含非线性光纤光学原理篇及应用篇两部分
2024/2/11 1:15:16 16.65MB 非线性光纤光学
1
高光谱成像的应用效果非常依赖于所获取的图像信噪比(SNR)。
在高空间分辨率下,帧速率高、信噪比低,由于光谱成像包含了两维空间-光谱信息,不能使用时间延迟积分(TDI)模式解决光能量弱的问题;目前多采用摆镜降低应用要求,但增加了体积和质量,获取的图像不连续,且运动部件降低了航天的可靠性。
基于此,将超高速电子倍增与成像光谱有机结合,构建了基于电子倍增的高分辨率高光谱成像链模型,综合考虑辐射源、地物光谱反射、大气辐射传输、光学系统成像、分光元件特性、探测器光谱响应和相机噪声等各个环节,可用于成像链路信噪比的完整分析。
采用LOWTRAN7软件进行大气辐射传输计算,对不同太阳高度角和地物反射率计算像面的照度,根据电子倍增电荷耦合器件(EMCCD)探测器的噪声模型,计算出不同工作条件下的SNR。
对SNR的分析和实验,选择适当的电子倍增增益,可使微弱光谱信号SNR提高6倍。
2024/2/10 13:49:08 10.84MB 探测器 高光谱成 信噪比 电子倍增
1
电子科技大学《应用光学》期末复习习题(含答案)
2024/2/6 16:33:09 512KB 光驱
1
提出一种基于维纳-辛钦定理计算光学相干层析成像(OCT)系统轴向分辨率δz的通用方法:对光源的功率谱密度分布进行傅里叶逆变换,得到其自相干函数,由其半峰全宽值来获得δz。
利用该方法计算了高斯和非高斯分布光谱光源OCT系统的δz,通过与厂商给出的产品标称值相比较,验证了本方法对于高斯和非高斯分布光谱光源的正确性。
以超宽带白光光源为例,使用滤光片滤除边缘部分光谱后形成非高斯分布光谱,搭建实验系统,实测δz,所得结果与本方法的计算结果较为接近,实验验证了本方法的正确性。
本方法对于非高斯分布光谱光源OCT系统δz的计算结果,能为系统设计时的参数考虑与器件选择等提供依据。
1
用脉冲激光沉积技术制备了钛酸锶钡(Ba0.5Sr0.5TiO3)薄膜。
用X射线光电子能谱和原子力显微镜分别分析了薄膜的化学组分和表面形貌。
在交流信号为50mV和100kHz时测量了薄膜的介电系数和介电损耗随外加电场的变化关系,得出最高的介电可调率达到45%。
利用单光束纵向Z扫描的方法研究了薄膜的非线性光学性质,得到非线性折射率为5.04×10-6cm2/kW,非线性吸收系数为3.59×10-6m/W,测量所用光源的波长为532nm,脉宽为55ps,表明Ba0.5Sr0.5TiO3薄膜有较快的非线性光学响应。
2024/2/2 14:45:37 1.28MB 薄膜光学 脉冲激光 介电系数
1
通用自旋动量锁定光学力
2024/1/31 9:14:17 465KB JupyterNotebook
1
摄像测量学(Videometrics或Videogrammetry)是近十几年来国际上迅速发展起来的新兴交叉学科。
它主要是由传统的摄影测量学(Photogrammetry)、光学测量(OpticalMeasurement)与现代时尚的计算机视觉(ComputerVision)和数字图像处理分析(DigitalImageProcessingandAnalysis)等学科交叉、融合,取各学科的优势和长处而形成的。
它的处理对象以数字(视频)序列图像为主。
2024/1/27 21:46:56 4.46MB 摄像 测量学
1
光子集成干涉成像系统具有体积小、质量轻、能耗低、分辨率高的成像特性,有望取代传统大口径望远镜实现远距离探测。
研究了光学干涉探测成像原理,建立了空间目标干涉图像复原模型。
研究了微透镜阵列排布对成像质量的影响,提出了微透镜阵列设计方法。
研究了光学相干基线匹配对空间目标频谱覆盖的影响,提出了能够高效覆盖高、中、低频谱的相干基线匹配方法。
最后,比较了不同的微透镜阵列排布和干涉基线匹配方式下目标图像仿真复原效果。
结果表明,所提微透镜阵列排布方式和干涉基线匹配方法能够提升空间目标频谱覆盖,提高目标图像复原质量。
1
共 411 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡