blurhash:Nim中的Blurhash编码器-解码器算法实现
2025/6/12 6:49:52 101KB image algorithm nim hash
1
该文件为元启发式算法中水循环算法MATLAB源代码,希望对同学们有帮助
2025/6/12 4:25:19 1.02MB 优化算法 智能计算
1
Python算法
2025/6/12 1:51:08 35KB Python
1
生理信号中,能够自动的对心电图(Electrocardiograph,ECG)信号进行分析是当前信号处理领域中的研究热点和难点,能够自动的进行心电图信号的分析将会强有力的促进医疗事业的蓬勃发展,同时能够使国民的健康水平有大幅度的提高,对于现代信号处理技术在医疗领域中应用的将会产生重大的突破。
对于心电信号的分析有很广泛的研究内容以及研究方法,其中能够快速准确的定位心电信号中QRS波群和P、T波,是心电图信号分析的一个关键环节,心电信号中往往拥有过多的信号干扰,去除信号的干扰是准确检测各种特征波的前提。
截止到现在为止,当前对于心电信号的滤波方法研究以及对于特征波形的定位中还存在着许多的不足以及亟待改进的地方。
针对当前现状,本文从以下两个方面展开研究,包括“心电信号滤波”以及“QRS波形定位”。
由于心电信号产生的十分微弱,周围环境中掺杂的肌电干扰、基线漂移以及工频干扰都会对心电信号造成影响。
本文设计了针对50Hz工频干扰的滤波器设计。
从实际情况出发来看,设计了基于FIR陷波器和Levkov滤波法相结合的方法来滤除信号中50Hz工频干扰。
实验结果显示,改进后的算法相比较传统的滤波器而言,是一种更为有效ECG信号滤波法。
QRS波形定位:特征波形定位是心电信号分析与诊断的基础,是诊断的入手点。
QRS波群是心电图最主要最突出的波段,是检测其他波形的前提,P波和T波在诊断中也有重要意义。
通过对临床QRS复合波的形态研究,根据小波多分辨率分析的特点和模极大值检测原理,提出一种Marr小波链检测QRS波群的新算法。
变换3种尺度来定位R波,然后对定位到的峰值采样点采取多数表决的方式,最终唯一确定R波位置。
R波确定后再向前、向后搜索Q、S波。
对于P波和T波则增大尺度,应用同样的方法来检测。
2025/6/11 18:08:19 139.6MB ECG 噪声干扰 QRS
1
由于成像传感器噪声,相片颗粒及图像在传输过程中的通道传输误差等,会使得图像上会出现随机的、离散的、孤立的像素点,即图像噪声。
图像噪声在视觉上通常和它们相邻像素明显不同,表现为黑区域上的白点或者白区域上的黑点,影响到图像的视觉效果和有关的处理工作。
所以,需要对图像中的噪声进行消除,本论文主要阐述了中值滤波的工作原理及其他滤波方法的比较。
2025/6/11 12:10:50 1.09MB 图像处理 中值滤波 椒盐噪声
1
根据算法原理自己编写的基本算法的代码,包括自己挑选的数据集,对算法准确率的测试
2025/6/11 12:32:26 127KB KNN C均值
1
针对复杂运动背景中慢速小目标检测误检率高,实时性差等问题,提出了基于自适应阈值分割的慢速小目标检测算法。
首先计算连续两帧图像特征点的金字塔光流场,对光流场进行滤波,获取匹配特征点集合。
然后对图像运动背景进行建模,拟合投影模型参数,通过投影模型得到运动背景补偿图像,进行图像差分处理,获得差分图像。
最后迭代计算差分图像的自适应阈值,修正差分阈值,差分图像二值分割,检测出运动目标。
实验结果表明算法能够准确地检测出复杂背景中的慢速小目标,虚警率为2%,目标漏检率为2.6%,目标检测准确率95.4%,每帧图像目标检测时间为38ms,能够满足运动目标检测对实时性的要求。
1
SHEPWM特定消除脉宽调制
2025/6/11 0:54:28 98KB SHEPWM
1
VIBE前景检测方法,老外09年提出的新背景建模方法,速度比混合高斯背景模型提高几倍,检测效果也好于混合高斯模型。
该包中包含了基本原理以及算法源代码。
2025/6/10 22:39:33 9.66MB 背景建模 VIBE 高斯混合 openCV
1
0、可直接复制执行1、生成1024比特的随机大整数2、对该整数进行小素数检验,在进行miller_rabin算法检测3、获得大素数p、q后,计算n、e、的d过程有说明4、可以对任意数字字母汉字加解密5、内容的注释详细,易理解;
用像伪代码般的python码出来的更容易对代码转换
2025/6/10 16:31:52 5KB miller_rabin RSA 大素数 python
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡