通信的双方,要想保证信息的安全传送,必须采用信息加密机制。
在单密钥体制中,双方通信需要共同的密钥。
在一个通信网络中,若有多个通信端,则每一个都需拥有和其它端点通信的不同的密钥,其密钥的管理和生成是一个很大问题。
为此,在一个通信网络中,开辟一个大家都信任的密钥分配中心KDC(Keydistributioncenter),每一个客户(X)与KDC拥有一个共享密钥(主密钥Kx)。
当客户A方想与另外一方B进行通信时,A首先要连接KDC,用以申请和B通信的会话密钥(KS),成功后再与B进行通信,B方验证A方身份后,双方利用分配的共享的密钥即可进行保密通信了。
2024/2/18 3:04:28 113KB KDC的保密通信系统
1
作为通讯的双方A和B,都已经分别和KDC拥有会话密钥Ka和Kb,但A、B之间事先没有保密通道,需要依赖KDC为它们的会话分配临时密钥Ks。
在完成会话密钥Ks的分配后,A利用Ks对特定文件(test-1.txt)进行加密,并发送给B;
B利用Ks对密文进行解密,并对比解密后的明文信息同原来的文件是否一致。
2024/2/10 14:21:26 17KB KDC
1
服务器图形GOLANGAPI模板的模块如何使用范本您只需要在.go文件中包含此行importserver_graphql"gitlab.com/fendcer-company/common/golang-modules/server-graphql"您当然可以包括此模块的任何子模块。
然后,如果编译失败,则应启动此行goenv-wGOPRIVATE=gitlab.com/fendcer-company/common/golang-modules/*/!\使用此功能需要您有权访问此存储库,并且您已为gitlab帐户设置了ssh密钥如果有错误Linux将这些行添加到〜/.gitonfig中:[url"ssh://git@gitlab.com/"]insteadOf=https://gitlab.com/[user]
2024/2/9 10:14:47 25KB Go
1
Zprotect是新一代的软件加密保护系统,拥有多项革命性的创新技术,设计用来保护您的软件产品不被破解,减少由于盗版给您带来的经济损失!此外,Zprotect拥有简单易用的许可控制系统,您无需更改任何代码,即可为您的软件添加注册机制。
与传统软件保护系统相比,Zprotect更加注重对代码的处理,并且拥有良好的稳定性和兼容性,是您配置软件保护系统的最佳选择!Zprotect拥有简单易用、高效灵活的注册和授权管理系统:一键试用技术.Zprotect为您提供一键试用技术,您不必修改任何源代码,在短短几分钟之内就可以将您的完整版软件转换为“先试用后购买”的试用版软件,甚至还可以支持带硬件锁定的序列号注册。
内建注册和许可管理系统.Zprotect内建灵活易用的注册和许可管理系统,您可以轻松创建具有时间限制、硬件锁定、水印信息的注册码。
动态算法生成引擎.外壳所使用算法均动态生成,随机且唯一,让逆向算法变得困难和高成本。
时间限制注册密钥.如果您需要限制注册版本的有效期,可以通过创建具有时间限制的注册密钥来实现。
硬件锁定(一机一码).激活硬件锁定功能的注册密钥,只能在某一特定计算机上使用;
您可以通过锁定用户计算机的硬件信息来控制注册码的传播,例如CPU、硬盘序列号、网卡MAC地址等。
密钥黑名单.如果您的用户泄漏了注册密钥,那么您就可以将该密钥添加进密钥黑名单,这样下一版本更新的时候您就可以锁定该密钥。
启动密码保护.这种附加的保护可以有效防止软件未经授权的使用,必须输入正确的密码才可以运行程序。
试用次数、天数、日期和运行时间限制.使用Zprotect,您可以轻松为您的应用程序添加试用次数、试用天数、试用日期和试运行时间等限制;
这样您的客户就可以全功能评估您的软件产品,增大购买意向
2024/2/2 8:44:33 4.54MB Zprotect专业版
1
本实验应用DES,RSA,MD5等加密算法,以及Socket套接字实现一个简单的加密解密的聊天工具CryptTalk。
本实验的程序在jdk1.6与Eclipse开发环境下编写,基本实现了消息加密的聊天工具的功能。
通信的步骤基本如下:首先,服务器端随机产生一对RSA密钥,将公钥发送给客户端,客户端将自己的对称密钥用公钥加密发送给服务器端,服务器端接收到加密后的密钥后,用自己的私钥解密得到对称密钥。
然后服务器端和客户端都利用这个对称密钥对发送的消息加密,进行加密后的聊天。
同时把消息经过MD5加密生成摘要发送,在接收端解密后进行MD5加密比较,检查信息是否被篡改。
2024/1/31 22:44:21 1.98MB DES MD5 RSA Socket
1
讲解云服务面临的安全威胁、安全架构的演进、Google生产环境安全、Google容器纵深防御体系、分布式系统安全、密钥体系、Google租户安全体系架构、Google可信架构、未来技术展望等
1
基于无线物理层密钥生成方法中信道量化和信道估计的算法MATLAB实现
2024/1/25 22:47:30 3KB MATLAB LS算法 CQ算法 密钥生成
1
QTP/ALM11.0安装密钥无限使用
2024/1/24 15:38:03 760B ALM QTP 密钥
1
1、数字签名原理用RSA算法做数字签名,总的来说,就是签名者用私钥参数d加密,也就是签名;
验证者用签字者的公钥参数e解密来完成认证。
下面简要描述数字签名和认证的过程。
(1)、生成密钥为用户随机生成一对密钥:公钥(e,n)和私钥(d,n).(2)、签名过程a) 计算消息的散列值H(M).b) 用私钥(d,n)加密散列值:s=(H(M))modn,签名结果就是s.c) 发送消息和签名(M,s).(3)、认证过程a) 取得发送方的公钥(e,n).b) 解密签名s:h=smodn.c) 计算消息的散列值H(M).d) 比较,如果h=H(M),表示签名有效;
否则,签名无效。
根据上面的过程,我们可以得到RSA数字签名的框图如图2-1:图2-1RSA数字签名框图2、 假设Alice想和Bob通信,以本地两个文件夹Alice和Bob模拟两个用户,实现消息M和签名的模拟分发(1)、Alice通过RSA算法生成一对密钥:公钥(e,n)和私钥(d,n),将公私钥分别存入pubKey.txt和priKey.txt中。
pubKey.txt中公钥如下:priKey.txt中私钥如下: (2)、将Alice中的pubKey.txt拷到Bob中,模拟公玥的分发。
(3)、将Alice中的消息info.txt做散列,将散列后的值存入hashInfo.txt中。
(4)、将Alice中的消息hashInfo.txt和签名sign.txt拷到Bob中,实现M密文状态下的签名与模拟分发、消息传递。
(5)Bob取得公钥pubKey.txt,用公钥解密签名,计算消息的散列值H(M).比较,如果h=H(M),表示签名有效;
否则,签名无效。
后台运行结果如下:
2024/1/24 8:56:16 17KB java数字签名
1
问题?免责声明:此项目应仅用于授权测试或教育目的。
BYOB是面向学生,研究人员和开发人员的开源后开发框架。
它包括以下功能:预制的C2服务器自定义有效载荷生成器12个开发后模块它旨在让学生和开发人员轻松实现自己的代码并添加出色的新功能,而无需从头开始编写C2服务器或远程管理工具。
该项目包含2个主要部分:原始的基于控制台的应用程序(/byob)和WebGUI(/web-gui)。
网络图形用户界面仪表板C2服务器的控制面板,带有单击界面,用于执行开发后模块。
控制面板包括客户端计算机的交互式地图和仪表板,该面板允许高效,直观地管理客户端计算机。
有效载荷发生器有效负载生成器使用涉及Docker容器和Wine服务器的黑魔法,为您选择的任何平台/体系结构编译可执行有效负载。
在使用生成安全对称密钥之后,这些有效载荷会生成反向TCP外壳,并通过AES-256
2024/1/17 12:24:28 40.88MB
1
共 352 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡