1设计总体思路,基本原理和框图 41.1 设计总体思路 41.2 基本原理 51.3 系统设计框图 52单元电路设计 62.1 一百进制分计数器和六十秒计数器的设计 62.1.1分、秒计数器的设计 62.1.2分、秒计数器的电路图 72.2 秒脉冲发生器 92.2.1秒脉冲发生器原理 92.2.2其原理图如下所示 93循环控制电路 103.1 其基本原理简述 103.2 其原理图 114单稳态延时电路 124.1其原理图 125总控制电路 136故障分析与电路改进 167总结与调试体会 188附录(元器件清单) 209参考文献 201.洗衣机电机的工作顺序:启动——>正转20s——>暂行10s——>反转20s——>暂行10s——>停止I______________________________________I定时未到2.用4个LED模拟洗衣机的动作状态:LED1~LED4右移循环点亮表示正转,LED1~LED4左移循环点亮表示反转,LED1~LED4同时闪烁点亮表示暂停,全灭为停止。
3.用数码管显示洗涤时间,按倒计时方式对洗涤过程作计时显示,直到时间到停机,并发出音响信号报警。
4.洗涤时间在0-60分钟内可由用户任意设定,并设置启动键,在置定时时间后,按启动键开始机器运转。
5.设置停止键,在洗涤过程中随时按该键可终止动作,并使显示器清0。
要求完成的主要任务:1.设计思路清晰,给出整体设计框图2.设计各单元电路,给出具体设计思路、电路器件3.总电路设计4.安装调试电路5.写出设计报告
2023/9/20 23:09:41 771KB 洗衣机 控制器 数电课程设计
1
这一资源集所有当前和未来动画资源包于一体!此资源包包含:-基本运动专业版资源包-村民动画资源包-近战勇士动画资源包-施法法师动画资源包-投掷动画资源包-跳舞动画专业版资源包-反向动力学助手工具技术信息:-220多个人形角色即用动画-不同的假人模型和制件-基本的道具模型和制件-包含不同的示例场景
2023/9/20 7:21:31 114.57MB MegaAnimations Mega Animations
1
适用于Unity3d2017.1版的TextMeshPro。
TextMeshPro可以代替Unity现有文本组件如TextMesh及UIText的功能。
TextMeshPro使用SignedDistanceField(有向距离场,以下简称SDF)作为主要的文本渲染管线,能够以任意分辨率在任意位置渲染出非常清晰的文本。
TextMeshPro使用一系列自定义着色器来更好地利用SDF文本渲染的能力。
只需简单地更改材质属性,加入一些文本样式,例如放大、描边、软阴影、倾斜、纹理及发光特效等等,即可动态改变文本的显示效果,还可以通过创建材质设来保存这些文本样式以便后续重用。
2023/9/16 15:18:26 7.25MB TextMesh Pro 2017.1 Unity3d
1
网络调试助手NetAssist最新更新版本,更新内容:(1)增加支持直接域名连接访问。
(2)解决了数据循环发送时CPU占用率(3)增加了[AlwaysOnTop]按钮。
(4)修正了IP地址末尾数大于127时报错的问题。
(5)增加了本地IP绑定选择,允许用户选择监听的网络。
(6)增加了远程主机列表,自动保存通信过的地址。
(7)增加了快捷输入功能,最多可以保存最多64条发送数据。
(8)修正了接收窗口乱码插入报错的问题。
(9)优化了通信相关的一些细
2023/9/13 21:17:28 463KB 网络调试助手 网络 调试 助手
1
实施与ImageNet-训练ResNet50图像编码器和FC/FC-UpConv解码器变化:支持以视图为中心和以形状为中心的训练(以形状为中心的效果更好)同时支持倒角距离和土方距离,因为损耗(EMD速度较慢,但​​性能要好一些)训练10,000个地面真点可提高1K/2K训练的性能(这类似于最近基于SDF的方法,其中通常会采样>10,000个查询点)要使用,请先编译cd和emd(请参阅自述文件),然后运行bashtrain.sh要下载数据,请单击下载Chair数据(10K采样点云+24个随机视角的渲染图像)。
请注意,这是在PartNet数据拆分之后进行的。
您需要切换到其他论文中使用的那些。
在Ubuntu16.04,Cuda9.0,Python3.6.5,PyTorch1.1.0上测试了代码。
此代码使用Blenderv2.79渲
2023/9/13 16:11:43 290KB Python
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
简单好用的调色LUT
2023/9/10 11:21:20 18.13MB 视频剪辑 调色 短视频 LUT
1
pytroch官网提供的训练模型:resnet18:resnet18-5c106cde.pth和resnet50:resnet50-19c8e357.pth(两个文件打包在一起)
2023/9/10 7:05:27 132.2MB pytorch resnet
1
人脸检测模型:PadddleHub已经提供的训练模型(pyramidbox_lite_mobile_mask/pyramidbox_lite_server_mask) 链接:[link](https://www.paddlepaddle.org.cn/hub/scene/maskdetect).切割人脸图像:1.使用OpenCV直接对人脸图像按比例进行切割。
2.使用人脸关键点检测,按点位进行切割.链接:[link](https://www.paddlepaddle.org.cn/hublist?filter=en_category&value=ImageClassification)O
2023/9/10 2:29:40 4KB 人脸识别
1
术语港受Wireshark启发的tshark终端用户界面。
V2.2现在带有vim键,数据包标记,命令行和主题!请参阅。
如果您要在具有较大pcap的远程计算机上进行调试,而又不想将其重新发送回桌面,termshark可以为您提供帮助!产品特点读取pcap文件或嗅探实时接口(允许使用tshark)使用Wireshark的显示过滤器过滤pcap或实时捕获重新组装并检查TCP和UDP流按协议查看网络对话将数据包范围从终端复制到剪贴板以Golang语言编写,可在每个平台上编译为单个可执行文件-适用于Linux,macOS,BSD变体,Android(termux)和Windows的下载tshark具有termhark尚未公开的更多功能!请参阅。
安装套件termhark已针对以下平台进行了打包:,,,,,,,和。
建造termhark使用Go模块,因此最好使用Go1.12或更高版本进行编译。
设置GO111MODULE=on然后运行:gogetgithub.com/gcla/termshark/v2/cmd/ter
2023/9/9 23:18:50 338KB go golang pcap tui
1
共 358 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡