本程序是用来对带有空气阻力物体在空中飞行时的轨迹进行预估的采用了最小二乘法进行轨迹拟合,效果误差可以限制在厘米级
2023/7/8 3:24:39 635KB 斜抛轨迹预估
1
本算法是用matlab求解函数极值,程序的框架是遗传算法的框架,解决不同的问题时,稍微修改一下就行了,基本的框架是不变的。
包含了源程序,算法说明,包括一份详细得报告,读者应该能比较容易的看懂。
2023/7/4 8:27:21 157KB 遗传算法 matlab 函数极值
1
在一个经典的k-means算法程序上的改进,能够对图像进行分层输出,最大分层数位32.程序采用的是vs2005实现,内附有实验源码及实验结果图像,包括分2、4、8、32层的结果,希望对图像分割感兴趣的朋友有所帮助。
2023/7/2 16:53:26 3.08MB k-means 图像分割 实现
1
简单的遗传算法,计算函数最值.functionga_main()%遗传算法程序%n--种群规模%ger--迭代次数%pc---交叉概率%pm--变异概率%v--初始种群(规模为n)%f--目标函数值%fit--适应度向量%vx--最优适应度值向量%vmfit--平均适应度值向量clearall;closeall;clc;%清屏tic;%计时器开始计时n=20;ger=100;pc=0.65;pm=0.05;%初始化参数%以上为经验值,可以更改。
%生成初始种群v=init_population(n,22);%得到初始种群,22串长,生成20*22的0-1矩阵[N,L]=size(v);%得到初始规模行,列disp(sprintf('Numberofgenerations:%d',ger));disp(sprintf('Populationsize:%d',N));disp(sprintf('Crossoverprobability:%.3f',pc));disp(sprintf('Mutationprobability:%.3f',pm));%sprintf可以控制输出格式%待优化问题xmin=0;xmax=9;%变量X范围f='x+10*sin(x.*5)+7*cos(x.*4)';%计算适应度,并画出初始种群图形x=decode(v(:,1:22),xmin,xmax);"位二进制换成十进制,%冒号表示对所有行进行操作。
fit=eval(f);%eval转化成数值型的%计算适应度figure(1);%打开第一个窗口fplot(f,[xmin,xmax]);%隐函数画图gridon;holdon;plot(x,fit,'k*');%作图,画初始种群的适应度图像title('(a)染色体的初始位置');%标题xlabel('x');ylabel('f(x)');%标记轴%迭代前的初始化vmfit=[];%平均适应度vx=[];%最优适应度it=1;%迭代计数器%开始进化whileit<=ger%迭代次数0代%Reproduction(Bi-classistSelection)vtemp=roulette(v,fit);%复制算子%Crossoverv=crossover(vtemp,pc);%交叉算子%Mutation变异算子M=rand(N,L)<=pm;%这里的作用找到比0.05小的分量%M(1,:)=zeros(1,L);v=v-2.*(v.*M)+M;%两个0-1矩阵相乘后M是1的地方V就不变,再乘以2.NICE!!确实好!!!把M中为1的位置上的地方的值变反%这里是点乘%变异%Resultsx=decode(v(:,1:22),xmin,xmax);%解码,求目标函数值fit=eval(f);%计算数值[sol,indb]=max(fit);%每次迭代中最优目标函数值,包括位置v(1,:)=v(indb,:);%用最大值代替fit_mean=mean(fit);%每次迭代中目标函数值的平均值。
mean求均值vx=[vxsol];%最优适应度值vmfit=[vmfitfit_mean];%适应度均值it=it+1;%迭代次数计数器增加end
2023/7/1 23:41:32 4KB 遗传算法
1
介绍蒙特卡洛的算法程序,是用MFC编写的,可以直接拿来用的软件
2023/6/14 21:37:16 541B 蒙特卡洛
1
遗传算法和粒子群算法程序设计及实例应用
1
详细引见10种AD采集滤波算法的程序代码,优缺点,适用场合
2023/3/8 18:34:17 9KB AD采集滤波算法,程序
1
如资源名,matlab的程序,运转起来挺快的,我的matlab是2014a
2023/3/4 1:12:04 478B MATLAB
1
改程序运用matlab做的分水岭算法,程序功能比较全,而且还每一步骤都分的很清楚
2023/2/20 6:14:35 4.13MB matlab 分水岭
1
模仿退火算法和遗传算法,智能算法里面的两个重要算法思想;
程序已经通过了测试,可直接运行;
2023/2/17 1:30:48 2.27MB 遗传 模拟退火 Matlab 代码
1
共 176 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡