硬件设计包括温度控制系统组成、单片机硬件系统组成。

温度控制原理为,铂电阻阻值随温度的变化而变化,经过线性化检测电路转化为电压的变化,再经放大器放大后输入A/D转换器
2024/2/5 6:14:54 60KB 计算机,控制,温度控制,
1
直流双闭环控制系统的MATLAB仿真-leihanchen38.mdl为实现转速和电流两种负反馈分别作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套连接,如图所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;
转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用PI调节器,这样构成的双闭环直流调速系统的电路原理图如上图所示。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压Uc为正电压的情况标出的,并考虑到运算放大器的倒相作用。
图中还表示了两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压Uim*决定后了电流给定电压的最大值,电流调节器ACR的输出限幅电压Ucm限制电压Ucm限制了电力电子变换器的最大输出电压Udm。
2024/2/5 3:52:46 23KB matlab
1
分布式光纤拉曼放大器(DFRA)因其特有的在线、宽带、低噪声等特点越来越引起人们的重视。
利用其在线以及低噪声的特点,将其用作远程光纤水听器(FOH)系统的在线放大器,并测量引入分布式光纤拉曼放大前后系统噪声的变化情况。
实验结果表明,分布式光纤拉曼放大器作为在线放大器应用于远程光纤水听器系统后,系统的强度噪声和相位噪声的增加量均小于2dB。
同时,将分布式光纤拉曼放大器与目前广泛应用的掺铒光纤放大器(EDFA)进行对比,发现前者具有更好的噪声性能。
因此,分布式光纤拉曼放大器可用作远程光纤水听器系统的在线光放大器。
2024/1/29 9:31:36 3.56MB 传感器 光纤拉曼 在线 强度噪声
1
数字幅频均衡功率放大器软件代码全国电子设计竞赛准备资料
1
对基于半导体光放大器(SOA)中非线性偏振旋转效应(NPR)效应的单一光缓存环多数据包的全光时隙交换(TSI)处理能力进行了理论和实验研究,在使用归纳法导出单一缓存环实现多数据包全光时隙(TSI)必要条件的基础上,针对各种全光TSI操作要求得出了相应光数据包的调度方案,在实验上,以基于SOA中NPR效应的单一光缓存环实验系统,开展了多数据包全光TSI操作的实验研究,根据上述光数据包理论调度方案进行相应系统参数设定,进行了速率为10Gb/s的3个和4个数据包的全光TSI实验,实验结果与理论预期相符合,研究成果为减少昂贵SOA元件的用量、简化基于光缓存环全光TSI系统的结构提供了可靠依据,对推进...
1
《集成电路掩模设计:基础版图技术》(翻译版)的译者曾在美国留学执教多年,后在清华大学微电子所任教,长期从事IC设计的研究和授课工作,作为国内IC设计领域的顶尖讲师,译笔流畅生动,既通俗易读,又保持原书风味,帮助您更加轻松愉快地掌握集成电路的掩模设计,激发您对于版图设计工作的热情!现在您可以轻轻松松,兴致盎然地学习和掌握集成电路版图设计了!《集成电路掩模设计:基础版图技术》(翻译版)作者ChristopherSaint,IBM的顶尖讲师之一,以轻松幽默的文笔为读者提供了一本图文并茂、实用易读的版图设计参考书,自下而上,由浅入深地构造了设计理念,毫无保留地讲述了从最初版图设计到最终仿真的方方面面。
内容覆盖了模拟电路、数字电路、标准单元、高频电路、双极型和射频集成电路的版图设计技术,讨论了版图设计中有关匹配、寄生参数、噪声、布局、验证、封装等问题及数据格式,最后还提代了两个实际的例子,CMOS放大器与双极型混频器的版图设计。
2023/12/21 20:30:18 48.15MB 集成电路版图 版图 集成电路
1
前言第1章概述1.1宽带无线移动通信系统的发展1.2功率放大器线性化技术简介1.2.1国内外研究现状1.2.2本书的创新性工作1.3本书结构安排第2章功率放大器数学模型2.1功率放大器非线性效应分析2.2非线性效应基带等效分析2.3无记忆功率放大器典型模型2.3.1Saleh模型2.3.2Rapp模型2.3.3多项式模型2.4宽带功率放大器记忆效应分析2.5有记忆功率放大器模型2.5.1Volterra模型2.5.2多项式模型2.5.3Wiener模型2.5.4Hammerstein模型2.5.5并行Hammerstein模型2.5.6神经网络模型2.6本章小结第3章功率放大器非线性对传输信号的影响3.1非线性的时域及频域分析3.1.1谐波失真3.1.2互调失真3.1.3交调失真3.1.4AM/AM和AM/PM畸变3.2功率放大器非线性对多载波信号功率谱的影响3.2.1无记忆模型功率谱的解析表达3.2.2有记忆模型功率谱的解析表达3.2.3仿真及分析3.3功率放大器非线性对多载波信号符号率的影响3.3.1误符号率的解析表达3.3.2仿真及分析3.4功率放大器非线性评价指标3.4.1分贝压缩点功率3.4.2三阶互调系数3.4.3三阶截断点3.4.4交调系数3.4.5输入及输出回退3.4.6系统性能总损耗3.5本章小结第4章宽带功率放大器预失真技术简介4.1数字预失真技术综述4.2预失真技术基本原理4.3非自适应性预失真技术4.3.1方案概述4.3.2特性曲线的测量4.4射频自适应预失真技术4.5中频自适应预失真技术4.6基带自适应数字预失真技术4.7本章小结第5章宽带功率放大器预失真估计结构5.1直接学习结构5.2间接学习结构5.2.1基于IDLA的新算法5.2.2仿真及分析5.3本章小结第6章基于查询表的数字预失真6.1查询表预失真方法综述6.1.1查询表形式6.1.2查询表的指针方式6.1.3查询表地址索引方式6.1.4查询表自适应算法6.1.5查询表预失真方法的不足6.2无记忆查询表预失真方法6.2.1常规查询表预失真算法6.2.2改进的查询表预失真方法6.3有记忆查询表预失真方法6.3.1一维查询表预失真方法6.3.2二维查询表预失真方法6.4本章小结第7章基于多项式的数字预失真7.1多项式预失真方法综述7.1.1多项式模型7.1.2多项式自适应算法7.1.3多项式预失真方法的不足7.2多项式形式的选择7.2.1预失真多项式形式7.2.2正交多项式模型7.3无记忆多项式预失真方法7.3.1分段无记忆多项式预失真方法7.3.2直接学习结构递推系数估计方法7.3.3间接学习结构系数估计方法7.3.4正交多项式预失真方法7.3.5动态系数多项式预失真方法7.4有记忆多项式预失真方法7.4.1分段有记忆多项式预失真方法7.4.2归一化最小均方系数估计方法7.4.3广义归一化梯度下降系数估计方法7.4.4广义记忆多项式预失真方法7.4.5分数阶记忆多项式预失真方法7.4.6Hammerstein预失真方法7.5本章小结第8章宽带功率放大器预失真方案设计8.1数字预失真系统设计8.2反馈环路延迟估计8.2.1常规环路延迟估计方法8.2.2提出的环路延迟估计方法8.2.3仿真分析8.3PAPR降低技术与预失真8.3.1问题引出8.3.2PAPR降低技术8.3.3限幅对OFDM信号预失真性能的影响8.3.4PAPR降低技术与PA线性化的内在联系8.4宽带功率放大器的有效阶估计8.5关于硬件实现8.5.1非自适应预失真硬件实现8.5.2自适应数字预失真硬件实现8.6宽带功率放大器预失真新理论与技术8.6.1功率放大器预失真新理论8.6.2功率放大器预失真新技术8.7本章小结参考文献附录A符号表附录B缩略语
2023/12/19 1:19:29 18.5MB 预失真
1
同相放大器是一个电压串联负反馈放大器,信号输入到运算放大器的同相输入端,输出电压反馈到运放的反相输入端,构成电压串联负反馈放大电路。
其输入阻抗该、输出阻抗第、带负载能力强,且增益不受信号源内阻的影响。
故同相放大器在电路中有着广泛的用途,如电压跟随器等
2023/12/16 15:51:35 223KB 同相放大 电路设 LM324
1
《激光原理》是2009年1月国防工业出版社出版的图书,作者是周炳琨、陈倜嵘。
《激光原理》(第6版)主要阐述光器的基本原理和理论。
内容包括激光器谐振腔理论、速率方程理论和半径典理论;
对典型激光器、激光放大器及改善与控制激光器特性的若干技术也作了简要介绍。
绪言第一章激光的基本原理第二章开放式光腔与高斯光束第三章空心介质波导光谐振腔第四章电磁场和物质的共振相互作用第五章激光振荡特性第六章激光放大特性第七章激光器特性的控制与改善第八章激光振荡的半经典理论第九章典型激光器和激光放大器第十章半导体二极管激光器和激光放大器激光是20世纪以来继核能、电脑、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”。
原子受激辐射的光,故名“激光”。
2023/12/13 1:38:16 8.73MB 激光原理 周炳琨 习题解答 教材
1
凌力尔特(LinearTechnology)推出一款高压端功率监视器──LTC4151,该产品可量测电流以及7V至80V之输入电压。
LTC4151利用本身内部12位ADC,可连续量测高压端电流与输入电压,以提供一个真实的功率读值。
  LTC4151可取代采用独立ADC的昂贵电流检测放大器,还可搭配ADC的热插拔控制器或浮动接地ADC等先前的解决方案。
这些旧架构在许多案例上被ADC的输入电压范围(典型为5V或10V)所限制,不但价格昂贵,占据更多板面空间,并且不具可靠性。
LTC4151的单芯片解决方案,适用于宽广输入范围下测量输入功率,非常适合48V通讯设备、高阶夹层卡(AMC)和刀锋服
1
共 296 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡