针对图像边缘与轮廓不能精确重构的问题,提出了一种基于灰度共生矩阵的多尺度分块压缩感知算法。
该算法利用三级离散小波变换将图像分解为高频部分和低频部分。
通过灰度共生矩阵的熵分析高频部分图像块的纹理复杂度,并根据图像块纹理进行再分块、自顺应分配采样率。
采用平滑投影Landweber算法重构图像,消除分块引起的块效应。
对多种图像进行压缩重构仿真,实验结果表明,无观测噪声情况、采样率为0.1时,本算法在Mandrill图像上得到的峰值信噪比(PSNR)为25.37dB,比现有非均匀分块算法提高了2.51dB。
不同噪声水平下,本算法的PSNR比无噪时仅下降了0.41~2.05dB。
对于纹理复杂度较高的图像,本算法的重构效果明显优于非均匀分块算法,对噪声具有较好的鲁棒性。
2015/9/27 10:19:52 11.24MB 图像处理 压缩感知 灰度共生 自适应采
1
序一IX序二X双11大事年表XII引言XIII第1章阿里技术架构演进1双11是阿里技术发展的强大驱动力,双11业务的快速发展造就了阿里具备高度水平伸缩能力、低成本的电商架构体系。
这个架构体系是如何一步一步形成的呢?在形成过程中阿里遇到了哪些问题,做了哪些尝试,最终用什么样的思路、方法和技术解决了问题?1.1五彩石,电商架构新起点31.2异地多活,解除单地域部署限制的新型双11扩容方式91.3混合云,利用阿里云弹性大幅降低双11成本171.4OceanBase,云时代的关系数据库231.5手机淘宝,移动互联网电商新时代301.6蚂蚁技术架构演进36第2章稳定,双11的生命线43双11最大的困难在于零点峰值的稳定性保障。
面对这种世界级的场景、独一无二的挑战,阿里建设了大量高可用技术产品,形成了全链路一体化的解决方案,用愈加逼真和自动化的方式,去评估、优化和保护整个技术链条,最大化地为用户提供稳定可靠的服务。
2.1容量规划,资源分配的指南针452.2全链路压测,大促备战的核武器512.3全链路功能,提前开始的狂欢盛宴582.4自动化备战,喝着咖啡搞大促652.5实时业务审计,从系统可用到业务正确702.6故障演练,系统健壮性的探测仪752.7系统自我保护,稳定性的最后一道屏障82第3章技术拓展商业边界89双11业务驱动技术发展的同时,技术的创新与发展也不断推动着商业模式的升级与变革,实践着技术拓展商业的边界。
3.1招商报名,活动基础设施建设913.2会场,小二与商家共同打造的购物清单993.3搜索,大促场景下智能化演进之路1073.4个性化推荐,大数据和智能时代的新航路1143.5供应链,从飞速增长到精耕细作1203.6蚂蚁花呗,无忧支付的完美体验127第4章移动端的技术创新之路133从2010年开始,国内爆发了从PC向移动端技术和业务的持续迁移,移动深刻地改变着人们的衣食住行和人际交往。
阿里的双11始于2009年,正好经历了移动互联网崛起的全程,双11在移动端的主要创新有哪些呢?4.1Weex,让双11更流畅1354.2互动,让购物变成狂欢1434.3VR&AR;,移动端创新体验1534.4奥创&TMF;,让双11多端业务腾飞163第5章繁荣生态,赋能商家171双11从阿里内部员工的一个点子到全球购物狂欢节,其背后支撑是服务、物流、大数据、云计算、金融服务等,是商家自身业务结构的调整、消费者消费习惯的转变、第三方开发者的大量入驻,以及整个生态的变迁。
5.1聚石塔,开放的电商云工作台1735.2菜鸟电子面单,大数据改变物流1795.3生意参谋,数据赋能商家的“黑科技”1845.4阿里小蜜,用智能重新定义服务1915.5阿里中间件,让传统企业插上互联网的翅膀1985.6蚂蚁金服,金融机构间协同运维的探索和实践205展望213索引216
2017/5/25 10:37:31 15.44MB 架构 演进
1
数据包里有原始数据,打开就可以看到效果。
先用采集卡采集信号,得到信号后做EMD去趋向处理,去直流处理,然后时域分析波形(脉冲宽度等),频域分析(峰值频率,低频,中心频率等);
2017/9/22 20:41:11 859KB EMD MATLAB 超声检测 无损检测
1
使用STM32F4系列单片机(本次使用的是STM32F429,此程序F4全系列使用,只需留意修改好主频就行了)加陶晶驰3.5寸T0系列串口屏,由触摸屏上的按键开启测量,然后显示信号峰峰值,频率,画出波形,判断波形。
对频率变化的信号测量频率后确定时钟触发频率,即确定了采样率,用ADC双通道测量两路信号,用DMA传输至一个数组内存中,然后显示波形、计算Vpp、并对数据进行FFT,分析频谱确定波形名称(可判断正弦波,三角波,方波,脉冲波(有误差),锯齿波,等幅DTMF)
2022/10/20 12:49:20 20.46MB STM32F4
1
提出了利用倍频效应得到双波长抽运三零色散光子晶体光纤(PCF),产生近红外、中红外波段超连续谱。
设计三零色散光子晶体光纤结构,采用分步傅里叶算法数值求解非线性薛定谔方程,模仿双波长抽运三零色散光子晶体光纤产生超连续谱的演化过程,分析了不同光纤长度和脉冲峰值功率对产生的超连续谱的影响。
结果表明:当抽运激光脉冲中心波长分别为1μm和2μm、脉宽为100fs、重复频率为200kHz,传输距离为10cm、脉冲峰值功率为10kW时,得到了谱宽为690~3150nm的超连续谱,包含了近红外、中红外波段,光谱具有较好的连续性和平坦度。
1
这里次要是对声音信号进行分析。
因为Matlab在数字信号处理上的便捷,又有功能强大的工具箱辅助设计,所以我们可以利用Matlab完成声音信号频谱分析和时序分析的设计。
本次设计内容包括:1) 信号的获取2) 时域分析:包括频率,振幅,相位,周期,均值,峰值等3) 频域分析:次要分析波形的幅值、相位与频率的关系
2020/6/4 8:19:17 336KB matlab 频谱分析 时序分析 音频处理
1
可以经过输入信号机信号的归一化信号,可以很轻易的计算出信号的主瓣宽度、积分旁瓣比、峰值旁瓣比的数值
1
正弦波峰值检测和PWM双路互补输入,检测正弦波的峰值设置报警值
2017/8/7 8:35:47 5.07MB 正弦波峰值检 PWM双路互
1
基于三角形模糊数的非线性T-S模糊零碎的峰值点和分量半径优化
2019/3/12 8:39:36 594KB 研究论文
1
实验一三点式正弦波振荡器(模块1)一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2.通过实验掌握晶体管静态工作点、反馈系数大小对振荡幅度的影响。
图1-1正弦波振荡器(4.5MHz)将开关S3拨上S4拨下,S1、S2全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡器的频率约为4.5MHz振荡电路反馈系数:F=振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
三、实验步骤1.根据图在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2.研究振荡器静态工作点对振荡幅度的影响。
3.将开关S3拨上S4拨下,S1、S2全拨下,构成LC振荡器。
4.改变上偏置电位器RA1,记下发射极电流,并用示波器测量对应点的振荡幅度VP-P(峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。
5.经测量,停振时的静态工作点电流值为2.23mA6.分析输出振荡电压和振荡管静态工作点的关系,按以上调整静态工作点的方法改变Ieq,并测量相应的,且把数据记入下表。
Ieq(mA)1.201.401.591.802.23Up-p(mV)304348384428停振7.晶体振荡器:将开关S4拨上S3拨下,S1、S2全部拨下,由Q3、C13、C20、晶体CRY1与C10构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
8.拍摄晶振正弦波如下:f=4.19MHz四、实验结果分析分析静态工作点、反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。
答:晶体管的起振条件是约等于0.6V,使静态工作点处于此电压附近,并加入正反馈。
同时随着静态电流的增大,输出波形的幅度也增大。
增长到一定程度后,由于晶体管的非线性特性和电源电压的限制,输出波形振幅不再增长,振荡建立的过程结束,放大倍数的值下降至稳定。
|AF|=1,输出波形振幅维持在一个确定值,电路构成动态平衡。
五、实验仪器1.高频实验箱1台2.双踪示波器1台3.万用表1块
1
共 150 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡