运用迈普科学技术97光学和视觉的一个交汇,开发资源的交流,特别强大
2024/4/10 19:16:44 557.71MB maipu
1
该整理资料从图像传感器和照相机起源,利用图文并茂的方式引入。
同时也介绍摄像头的分类,CMOS传感器的构成和关键参数,提升感光效率的方法。
已经常见的对焦原理。
最后特别介绍了一下光学的基础理论,为没学过光学知识的童鞋可以全面了解整个信息而准备。
可做入门性知识了解。
2024/4/2 11:25:46 3.78MB 手机摄像头 光学变焦镜头 对焦
1
物理网本文的Tensorflow实施:我们提供实验数据以进行演示和快速演示。
引用文献:王菲,姚明cha,王海超,孟柳,吉安卡洛·佩德里尼,沃尔夫冈·奥斯坦,乔治·巴巴斯塔斯蒂和国海司徒。
使用未经训练的神经网络进行相位成像。
轻科学学报9,77(2020)。
需求python3.6张量流1.9.0matplotlib3.1.3numpy的1.18.1枕头7.1.2摘要迄今为止,为光学计算成像(CI)提出的大多数神经网络都采用监督训练策略,因此需要大量训练来优化其权重和偏差。
在许多实际应用中,在许多小时的数据采集中,除了环境和系统稳定性的要求外,不可能获得足够数量的地面真实图像进行训练。
在这里,我们建议通过将代表图像形成过程的完整物理模型合并到常规的深度神经网络中来克服此限制。
最终的增强型物理深度神经网络(PhysenNet)的最大优势在于,无需事先培
2024/3/31 3:15:13 1.04MB Python
1
激光原理第二版(英文版,扫描版)适合从事激光测量,大气激光通信,光学工程相关行业的人员进行学习和参考。
2024/3/30 14:31:23 31.52MB 激光原理
1
光栅条纹生成模块。
使用matlab中的GUIDE工具实现。
适用于结构光三维轮廓术(FTP、PMP等)及其它光学实验。
本代码已形成guide界面,简洁、直观、可修改,能满足数字投影光栅的绝大部分要求。
2024/3/29 22:39:30 21KB 光栅条纹 正弦光栅 光栅投影 条纹
1
MATLAB数值仿真,针对光学课程的。
非常好用的教材。
书中有很多源代码可以直接拿来用的。
2024/3/29 7:40:34 2.02MB Matlab波导
1
溶胶-凝胶法Er_2O_3薄膜的结构和光学特性
2024/3/28 9:31:13 640KB 研究论文
1
数字全息显微术(DHM)是一种使用光学干涉图案来记录三维光场的技术,用于成像,传感和显微技术应用。
“无透镜”串联DHM是最简单的布置,不需要透镜,没有镜子,通常仅需要光源,样品和诸如CCD或CMOS像素阵列之类的数字成像器芯片。
尽管如此简单,但无透镜直列DHM能够在宽阔的视场上生成高分辨率图像,并允许研究人员记录光场的幅度和相位,并以数字方式重建形状,厚度,3D位置,速度,泡Kong或小颗粒的折射率和其他参数。
因此,将在线DHM与微流控技术,光流测速,低成本成像,即时诊断,单细胞跟踪,细胞流式细胞仪,计数,分选和芯片实验室相结合有很多潜在的机会技术。
2024/3/22 12:17:58 1.9MB
1
根据光学玻璃元件超精密抛光加工技术的需求,研究了磁性复合流体(MCF)抛光液成分配比及制备,并在此基础上结合不同抛光工艺参数实验分析BK7光学玻璃的抛光质量。
研究不同成分配比下的磁性复合抛光头的物理表现,在MCF各成分质量分数为铁粉55%、水30%、氧化铈12%以及α-纤维素3%时,获得形状及稳定性最佳的MCF抛光头;
采用该比例配制的MCF在自行研制的MCF抛光设备上对BK7玻璃进行定点抛光,对MCF抛光头正压力及BK7玻璃抛光后的表面粗糙度进行研究。
通过实验数据分析发现抛光正压力随主轴转速的增大而增大,随磁铁偏心距的增大而减小,经过50min定点抛光,表面粗糙度从10.2nm降低到6.7
2024/3/22 6:09:08 9.76MB 光学制造 磁性复合 抛光 正压力
1
相分离一直是液晶(LC)-聚合物复合材料中一个有趣且重要的主题。
我们通过基于振幅调制的空间光调制器的无掩模光刻系统研究了LC聚合物复合物中光致聚合引起的相分离。
通过优化曝光条件和材料,我们在LC聚合物复合材料中实现了二维(2D)液晶液滴阵列(LCDA)。
进一步的研究表明,这种二维LCDA作为微透镜阵列,在一定电压下表现出与偏振无关的,电可调的聚焦特性。
由于在成本效益,快速制造和偏振无关的,电可调聚焦方面的优势,LC-聚合物复合材料中的这种相分离的微透镜阵列可以找到许多潜在的光学应用。
2024/3/14 4:55:54 1.54MB 研究论文
1
共 410 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡