考虑智能交通系统中员工在聚集站点上下班,建立车辆调度问题的数学模型。
针对蚁群优化算法的缺点,自适应地改变信息素挥发因子,采用混沌搜索产生初始种群可以加速染色体向最优解收敛,构成一种自适应蚁群优化算法。
应用该算法和基本蚁群优化算法对该模型求解,实验证明了构造算法在收敛速度和寻优结果两方面都优于基本蚁群优化算法
2024/1/30 18:48:49 877KB 车辆调度 机器学习 智能交通
1
模拟实现动态可变分区存储管理系统,内存资源的分配情况用一个单链表来表示,每一个节点表示一个可变分区,记录有内存首地址、大小、使用情况等,模拟内存分配动态输入构造空闲区表,键盘接收内存申请尺寸大小,根据申请,实施内存分配,并返回分配所得内存首址。
分配完后,调整空闲区表,并显示调整后的空闲区表和已占用的区表。
如果分配失败,返回分配失败信息。
模拟内存回收。
根据空闲区表,从键盘接收回收区域的内存作业代号。
回收区域,调整空闲区表,并显示调整后的空闲区表。
对于内存区间的分配,移出,合并就是相应的对链表节点信息进行修改,删除和创建相应的节点。
在模拟实现动态可变分区存储管理系统中用到的是“最佳适应算法”与“最坏适应算法”。
所谓“最佳”是指每次为作业分配内存时,总是把满足要求、又是最小的空闲分区分配给作业,避免“大材小用”。
因此保证每次找到的总是空闲分区中最小适应的,但这样会在储存器中留下许多难以利用的小的空闲区。
最坏适应分配算法是要扫描整个空闲分区表或链表,总是挑选最大的一个空闲分区割给作业使用。
进入系统时我们需要内存首地址和大小这些初始化数据。
成功后我们可以自由的使用首次适应算法与最佳适应算法对内存进行分配。
内存经过一系列分配与回收后,系统的内存分配情况不再连续。
首次适应算法与最佳适应算法的差异也就很容易的体现在分配时。
动态可变分区存储管理模拟系统采用最佳适应算法、最坏适应算法内存调度策略,对于采用不同调度算法,作业被分配到不同的内存区间。
1
问题描述:独立任务最优调度,又称双机调度问题:用两台处理机A和B处理n个作业。
设第i个作业交给机器A处理时所需要的时间是a[i],若由机器B来处理,则所需要的时间是b[i]。
现在要求每个作业只能由一台机器处理,每台机器都不能同时处理两个作业。
设计一个动态规划算法,使得这两台机器处理完这n个作业的时间最短(从任何一台机器开工到最后一台机器停工的总的时间)。
研究一个实例:n=6,a={2,5,7,10,5,2},b={3,8,4,11,3,4}。
2024/1/30 2:44:52 1.17MB C++编程,动态规划
1
这个教程是引导我opencl入门的教程,挺有帮助的。
介绍了opencl内存对象,kernel编写,GPU架构,线程调度,性能优化,都有具体例子。
2024/1/29 17:37:55 5.4MB OpenCL
1
一个获取知特定网数据的简单小爬虫,用python实现的,多线程,ip代理,任务自动调度
2024/1/28 5:19:41 7KB python爬虫
1
该电梯模拟系统设计了良好的界面,以及自主设计了电梯调度算法,保证电梯能搞在负载均衡的前提下实现乘客的快速响应,其实现采用了栈、队列等基本数据结构,在VS2017编译器,win10平台上开发,整个电梯的数据结构类型设计以及电梯调度算法对想要实现类似离散的模拟系统有指导意义。
2024/1/26 13:52:46 257KB elevator
1
这个文件夹包含了车间调度的所有标准算例,对车间调度方向的研究者有巨大帮助,还有使用介绍
2024/1/25 22:46:35 782KB JSP FJSP 全套 算例
1
模拟路由器中FIFO调度算法的实现,对路由器开放了两个线程,其中一个线程通过端口8083接收来自发送端发送的数据,另外一个线程通过端口8084转发数据到接收端。
2024/1/25 15:20:23 206KB WFQ Socket
1
重大软院操作系统实验二:线程调度,计算机操作系统原理,linux
2024/1/23 23:10:04 1.13MB 重大软院
1
一、 题目要求1.所有就绪进程按FCFS排成一个队列,总是把处理机分配给队首的进程2.模拟短进程调度算法,要求可以自动产生或者手动输入若干进程的名字、到达时间、运行时间;
输出中间每个进程的运行状态,最后产生完成时间、周转时间、带权周转时间的汇总清单
2024/1/23 8:30:08 913KB 操作系统 进程
1
共 490 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡