控制器设计往往需要精确的电机参数值来辅助设计,如无速度传感器控制、矢量控制最优PI值设计、电压源逆变器非线性因素在线辨识/补偿等。
但是随着温度、负载和磁饱和程度的变化,永磁同步电机的定子电感、绕组电阻和转子永磁磁链幅值等参数值大小都会随之而变化(偏离常温下设计值)。
其中,温度对永磁电机参数的影响(尤其是定子绕组电阻和转子永磁磁链幅值)是最明显也是最常见的。
对于定子绕组来说,温度的上升会导致绕组电阻值变大,而对于转子永磁来说,温度的上升会导致转子永磁磁链幅值下降。
当电机实际参数值相对于常温下的设计参数值发生比较大变化时,会对所设计的控制系统性能造成很大影响,甚至会让其无法工作。
因此,现在主流的研究趋势是通过系统辨识理论,利用量测的电机终端信号如定子绕组电流、电压和转速来估算定子绕组电阻和转子永磁磁链幅值的大小,进而在线调整控制器参数和间接估算定子绕组和转子永磁的温度。
本文对该类技术进行了深入和全面的研究,提出该技术的核心是要解决“两个问题”,并在这“两个问题”的基础上提出“三个解决方案”,最终在一套基于矢量控制的表面式永磁同步电机试验平台上进行了验证。
2024/10/31 0:33:31 27.35MB 永磁同步电机 pmsm 系统辨识 仿真
1
根据能量自动计算激光电流和运动速度,可以做多种图像补偿
2024/10/24 2:44:36 1.43MB sqlite c#
1
锂离子电池建模与仿真,电压,SOC,电流,温度,容量,内阻
2024/10/23 17:07:57 1.93MB 电池模型
1
针对电动汽车动力电池组长期不能完全充满而影响其使用寿命,设计了一种光伏电池车载充电装置,能够对动力电池组长时间小电流涓流充电以改善其充电状态,同时部分补充电池组能量,延长电动汽车续航里程与使用寿命。
采用TMS320F2808DSP芯片作为控制核心、以BOOST升压变换器作为主电路的硬件设计方案,完成了主要元器件的选型和参数整定,对设计参数进行了仿真验证和优化,并研制了样机。
制定了高性能算法与控制策略,既能完成光伏电池最大输出功率的跟踪,又能提高电池的充电效率,并基于MATLAB平台完成了DSP嵌入式应用程序设计,生成代码。
配备了车载监控系统,实现良好的人机交互功能。
实验结果表明:该装置性能稳定,光伏电池最大输出功率跟踪速度快,稳态误差小,效率高,并具有防止电池组过充电保护,人性化的人机交互平台,有很强的实用性。
2024/10/22 5:18:11 10.53MB ti
1
电子元器件基础知识介绍ppt,电阻的概念:导体对电流的阻碍作用就叫该导体的电阻。
电阻小的物质称为电导体,简称导体。
电阻大的物质称为电绝缘体,简称绝缘体。
导体的电阻通常用字母R表示,电阻的单位是欧姆,简称欧,符号是Ω。
比较大的单位有千欧(kΩ)、兆欧(MΩ)。
电阻器简称电阻(Resistor,通常用“R”表示)是所有电子电路中使用最多的元件。
电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。
电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。
2024/10/22 2:52:28 1.79MB 开关电源
1
附件里是无刷直流电机转速电流双闭环matlab仿真模型,仿真平台采用的是matlab2011b,亲测可用!
2024/10/21 8:21:10 109KB 电机控
1
可再生新能源利用的关键技术是将其转化为可并入电网的电能必须满足电网的电压和频率的要求。
介绍了采用下垂控制对直流微电源并网控制的分析研究,经电压控制器电流控制器对并网逆变器进行双环控制,使得到电压和频率满足并网的要求,还对系统负荷突变、电压跌落、三相短路等3种情况进行了仿真分析,仿真结果表明在这3种故障情况下,含直流微电源的并网系统仍能稳定运行,并能跟踪系统的动态输出。
关键词:直流微电源;并网逆变器;下垂控制;双环控制;解耦
2024/10/16 14:37:01 400KB Droop
1
带APFC的Boost升压电路的Matlab/Simulink仿真模型,带电压电流双闭环的控制策略,仿真结果较好,直流母线电压恒定,输入测交流电流功率因数接近于1,电流谐波畸变率较低。
2024/10/8 14:16:38 24KB MATLAB APFC BOOST PWM
1
CHI700E系列是通用双恒电位仪,可同时控制同一电解池中的两个工作电极的电位,其典型应用是旋转环盘电极,也能被用于其它需要双工作电极的情况下。
双恒电位仪只能用于同一溶液中的两个工作电极的电位控制以及电流测量,而不是两个独立的恒电位仪。
仪器内含快速数字信号发生器,用于高频交流阻抗测量的直接数字信号合成器,双通道高速数据采集系统,电位电流信号滤波器,多级信号增益,iR降补偿电路,双恒电位仪,以及恒电流仪(CHI760E)。
两个通道的电位范围均为+/-10V。
电流范围(两通道电流之和)为±250mA。
CHI700E系列是在CHI600E的基础上增加了一块电路板,内含第二通道电位控制电路,电流-电压转换器,灵敏度选择,三个增益级,一个具有八个数量级可变频率范围的二阶低通滤波器。
CHI700E能够控制两个工作电极的电位,允许循环伏安法,线性扫描伏安法,阶梯波伏安法,计时安培法,差分脉冲伏安法,常规脉冲伏安法,方波伏安法,时间-电流曲线等实验技术进行双工作电极的测量。
当用作双恒电位仪测量时,第二工作电极电位可以保持在独立的恒定值,也可与第一工作电极同步扫描或阶跃等。
在循环伏安法中,还可与第一工作电极保持一恒定的电位差而扫描。
两个工作电极的电流测量下限均低于50pA,可直接用于超微电极上的稳态电流测量。
CHI700E系列也是十分快速的仪器。
信号发生器的更新速率为10MHz,数据采集采用两个同步16位高分辨低噪声的模数转换器,双通道同时采样的最高速率为1MHz。
循环伏安法的扫描速度为1000V/s时,电位增量仅0.1mV,当扫描速度为5000V/s时,电位增量为1mV。
又如交流阻抗的测量频率可达1MHz,交流伏安法的频率可达10KHz。
仪器还有外部信号输入通道,可在记录电化学信号的同时记录外部输入的电压信号,例如光谱信号等。
这对光谱电化学等实验极为方便。
2024/10/6 4:51:17 13.37MB 辰华
1
南航阮新波教授倾注大量心血写出的行业奇书,读者阅读之后必定功力大增。
2024/10/5 4:12:33 16.88MB LCL PWM
1
共 573 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡