MUI:最接近原生APP体验的高性能前端框架...可从https://www.dcloud.io下载Hbuilder,选择新建“移动APP”,并选择“HelloMUI”工程模板,创建工程;然后通过数据线
2023/9/29 13:31:09 129KB MUI
1
变电站电压/无功控制一直以来都是众多学者和供电部门关注的问题。
目前广泛使用的基于“九区图”电压无功控制策略,因为电压无功控制装置和控制策略的矛盾,在实际运行中暴露出严重的问题。
从根本上改善电压无功调节特性,不仅要从控制策略上着手,还要从电压无功调节装置上着手。
寻找一种满足工程实际需要的变电站电压无功控制方式具有重要的理论意义和工程实用价值。
静止同步补偿器(STATCOM)具有响应时间短、产生谐波含量少,在系统电压下降时,输出无功的能力不受母线电压的影响。
在系统故障或负荷突增时,能够快速的交换无功,动态提供无功支撑,从而较好地改善电压水平,抑制冲击负荷造成的电压波动。
因此本文将STATCOM用于变电站电压无功控制中,改善变电站调压装置与控制策略“九区图”之间存在的不足,提出了一种在线灵敏度计算的基于“离散设备优先动作,连续设备精细调节”原则的电压无功控制策略,协调有载调压变压器、电容器以及STATCOM之间的运行。
一方面,变电站侧的电容器作为主要的无功输出更加接近无功负荷端,对整个电网起到一个基础性的无功支撑作用,而STATCOM的无功出力保持一定裕量的状态,使之有足够的可调无功储备,以应对变电站紧急情况,提高运行的安全性,同时有效的减少变压器分接头和电容器组的动作次数;另一方面,离散控制的有载调压变压器和电容器只能实现阶跃、分段的控制,而且其调节容量是一个相对较大的数值,通过sTATc0M快速的无功交换能力,降低电容器投切动作对系统造成的冲击。
通过电磁暂态仿真软件EMTDC/PSCAD对EPR工36节点系统进行仿真分析,验证本文所提出的电压无功控制策略的可行性和正确性。
2023/9/29 7:05:29 3.95MB 无功补偿
1
计算介数中心性(BC)、接近度中心性(CC)、特征向量中心性、子图中心性。
(matlab)
2023/9/26 8:45:23 1KB matlab 中心性
1
资源来自网络收集整理,ewf和uwf安装,带控制台,支持win8,win8.1,win10的32和64位系统。
推荐硬盘系统使用uwf能动态回收内存;wtgu盘系统使用ewf,能在保护u盘情况下更新系统盘。
两者可以共存,ewf保护系统盘,uwf保护资料盘。
两者保护均为扇区级,将写操作映射到内存,能加快系统速度(接近ssd),ewf可全盘保存修改,uwf可对文件、文件夹、注册表设置排除,关机保存。
2023/9/15 22:30:51 2.45MB uwf ewf win10 win8.1
1
根据参考图像各个通道的灰度分布,将一副图像的灰度分布映射过去,使映射后的两幅图像灰度分布非常接近,被称为histogrammatching或者histogramspecification,常用于网络训练的图像数据扩增
2023/9/14 21:11:33 5.4MB 图像深度学习 图像扩增 histogram ma
1
一本好书,研究dds数字频率合成必读!内容简介《直接数字频率合成》共6章,比较全面、深入地讨论了DDS的理论与应用。
主要内容包括DDS的基本概念、相位累加器、正弦查表、D/A变换器的噪声分析;
拟周期脉冲删除;
级数展开、连分式展开;
DDS相位噪声和杂散产生的机理及其降低;
DDS与PLL的组合;
分数-N频率合成器原理;
低噪声微波频率合成器的设计原理;
新的DDS结构等。
《直接数字频率合成》的特点是:内容新,反映了现在的研究和发展水平;
抓住问题的主要方面,把理论与应用结合在一起;
可供无线电通信领域中的研究者和工程技术人员学习参考,也可作为工作在其他领域中的有关人员学习参考。
3目录序言第1章直接数字频率合成原理1.1DDS的基本概念1.2相位累加器1.3正弦查表1.4D/A变换器1.4.1数字编码1.4.2输出波形1.5具有调制能力的DDS系统1.6逼近频率合成第2章DDS中的相位和杂散噪声2.1引言2.2矩形波输出2.2.1拟周期脉冲删除2.2.2基于修正的恩格尔级数展开的系统2.2.3基于连分式展开的系统2.2.4基于展开组合的系统2.2.5杂散信号2.3正弦波输出2.3.1量化输出正弦波的傅里叶分析2.3.2相位截断正弦波的频谱分析2.3.3正弦字的截断2.3.4背景杂散信号电平的估计2.3.5W和S之间的关系2.4D/A变换器的噪声分析2.4.1量化引起的信噪比2.4.2D/A变换器引起的非线性杂散信号2.4.3突发性尖脉冲2.5脉冲速率频率合成器的频谱第3章DDS中相位噪声和杂散信号的降低3.1DDS的噪声特性3.1.1不同电路的噪声特性3.1.2DDS的相位噪声3.2DDS中接近载波的噪声3.2.1DDS输出噪声的计算3.2.2接近载波噪声的理论基础3.2.3杂散频谱的估计3.2.4实验结果及讨论3.3输出滤波器3.4改进DDS电路的设计3.4.1降低ROM的容量3.4.2降低突发性尖脉冲的方法3.5DDS频谱性能的改进3.6DDS与PLL的组合3.6.1DDS与PLL组合合成器3.6.2十进制DDS的设计第4章分数-N频率合成器原理4.1FNPLL环路4.1.1FNPLL环路的组成4.1.2FNPLL环路的工作原理4.2FNPLL环路简化频率合成4.3使用FNPLL环路的频率合成器4.4DDS控制吞脉冲分数-N频率合成原理4.5DDS控制吞脉冲分数-N环路的杂散相位调制4.6双模式分频器4.7多级调制分数分频器4.7.1分数分频的新方法4.7.2具有∑-△结构的分数-N频率合成中的杂散信号4.7.3分数分频器的实现第5章低噪声微波频率合成器的设计原理5.1微波环路的基本框图5.2微波环路中的加性噪声5.3用环路滤波器改善输出噪声5.4微波频率合成举例5.4.1超低噪声微波频率合成器5.4.2雷达和通信系统中的低噪声频率合成器第6章新的DDS结构6.1混合DDS6.1.1混合DDS结构6.1.2800MHz混合DDS6.2DDS后接重复分频和混频器6.2.1总的要求6.2.25100结构作为偏移合成器6.2.3混频和分频链的前后端6.3综合技术结构6.4IIR滤波方法6.4.1IIR谐振器6.4.2用TMS320C30产生正弦波6.5复位方法6.5.1无稳定性控制的IIR滤波器6.5.2有稳定性控制的IIR滤波器6.5.3有稳定性控制和小□值的IIR滤波器6.5.4DCSW方法6.5.5IIR-ALT方法6.6实现与试验结果6.6.1数值输出6.6.2模拟输出附录附录A:拉普拉斯变换附录B:z变换附录C:DDS输出的傅里叶变换附录D:正交调制器相位误差的数字相位预矫正
2023/9/12 9:37:32 14.51MB dds 数字频率合成 白居宪
1
本文旨在通过设计一款分布式电网动态电压恢复器模拟系统装置,解决电力设备运行过程中电压暂降或中断情况下的动态电能安全问题。
装置采用"直流-交流"及"交-直-交"双重结构,控制系统采用TMS320F28335为控制核心,采用规则采样法和DSP片内EPWM模块功能实现SPWM波,经过软硬的设计,经测试本装置在PFC环节,功率因数基本接近1;
SPWM调制算法近似性引入的误差、直流侧电压波动、检测电路及AD转换器的误差小。
开机自检、输入电压欠压及输出过流保护,在过流、欠压故障排除后能自动恢复。
2023/9/4 19:01:33 893KB PFC; 逆变; SPWM; 锁相;
1
结构化查询语言SQL(StructuredQueryLanguage)是在1974年提出的一种关系数据库语言。
由于sQL语言接近英语的语句结构,方便简洁、使用灵活、功能强大,倍受用户及计算机工业界的欢迎,被众多计算机公司和数据库厂商所采用,经各公司的不断修改、扩充和完善,sQL语言最终发展成为关系数据库的标准语言。
2023/8/27 19:05:46 4.18MB 达梦 达梦数据库 DM7 _SQL
1
本书内容主要针对不同类型导弹的制导和控制系统的基本原理和工作过程进行分析,结合不同的制导律和姿态控制律设计方法对导弹的制导和控制系统进行工程化设计,并利用工程中常用的Matlab软件对导弹的制导和控制系统进行计算机数字仿真验证。
学生通过本书学习可以熟悉导弹制导控制系统的基本原理和工作过程,初步掌握导弹制导控制系统的建模、分析、设计和仿真方法,并且通过尽量接近工程化的设计和实践培养一定的工程应用能力,而这些方法和能力都是学生今后从事真正科研工作的基础和基本能力。
2023/8/18 12:22:45 2.08MB 导航制导 建模仿真
1
WIndows下使用caffe深度学习框架,编译caffe时会让下载一个接近一个G的NugetPackages依赖包,速度十分慢,而且会出现失败的情况,在此分享我用VS2013编译caffe时下载好的NugetPackages依赖包(温馨提示:caffe编译最好用VS2013,一开始用VS2017,就是下不下来这个包,血的教训)
2023/8/14 21:57:52 71B caffe
1
共 200 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡