不同于传统的非制冷红外成像技术,提出了基于微电子机械系统(MEMS)的新概念光学读出非制冷红外成像技术。
它的光学读出系统基于空间刀口滤波原理,具有高灵敏度、高分辨率和高抗震性等优点,但同时也受到了反光板的弯曲变形、粗糙度等复杂因素的影响。
在大量实验数据的基础上,利用夫琅禾费近场衍射理论,建立了复杂因素下光学灵敏度的理论分析模型,详细分析了刀口滤波位置、反光板的长度、曲率半径、粗糙度、LED光源的强度以及扩展宽度等对光学灵敏度的影响,并提出了通过极限操作使系统的光学灵敏度最大化的光学优化方法。
1
该程序假设天线紧贴墙壁,估计墙后物体反射波所用的时间延迟。
利用此时间延迟可用来做脉冲压缩,后投影成像等算法研究
2024/2/24 21:15:32 558B maltab 穿墙雷达 墙体时延估计 时延
1
合成孔径雷达成像的技术研究和分析相关论文、PPT及相关教程资料,个人整理,很全的资料文献,供大家学习参考
2024/2/23 14:37:03 50.88MB 合成孔径雷达 成像
1
雷达技术的发展使其具有高的二维分辨率,能对场景和目标成像,因而成像已成为雷达的一种新的功能,极大地提高了获取目标信息的能力。
它在各类雷达的许多方面得到越来越广泛的应用,本书共分8章,主要内容有:雷达高分辨的原理和实现的处理方法,一维距离像,合成孔径雷达,逆合成孔径雷达,干涉技术在合成孔径雷达和逆合成孔径中的应用等。
本书在内容的安排上更着重于理论联系实际,在将基本原理和算法介绍清楚的基础上,主要讨论实际实现中的各类工程技术问题,力求帮助雷达工程技术人员尽快地掌握这一新技术,并能用以解决实际工程问题。
,本书具有的设计性和实用性,将会指导从事雷达研究、制造的工程技术人员设计、制造出性能优异的雷达,对于从事雷达系统与技术教学的高等院校师生也是一本很有实践价值的教材或参考书,对于广大从事雷达装备使用与维护的雷达部队官兵和各行各业操作人员来说也是系统性学习雷达工程技术知识的参考书。
2024/2/17 17:51:33 16.99MB 雷达
1
利用线激光、单CCD相机、小孔成像与激光面约束模型的激光线测量法
2024/2/16 22:03:19 248KB 单目 测量
1
雷达后向投影成像(BP)成像算法,正交解调,匹配滤波距离压缩,
2024/2/12 2:19:52 3KB 雷达成像 BP
1
高光谱成像的应用效果非常依赖于所获取的图像信噪比(SNR)。
在高空间分辨率下,帧速率高、信噪比低,由于光谱成像包含了两维空间-光谱信息,不能使用时间延迟积分(TDI)模式解决光能量弱的问题;目前多采用摆镜降低应用要求,但增加了体积和质量,获取的图像不连续,且运动部件降低了航天的可靠性。
基于此,将超高速电子倍增与成像光谱有机结合,构建了基于电子倍增的高分辨率高光谱成像链模型,综合考虑辐射源、地物光谱反射、大气辐射传输、光学系统成像、分光元件特性、探测器光谱响应和相机噪声等各个环节,可用于成像链路信噪比的完整分析。
采用LOWTRAN7软件进行大气辐射传输计算,对不同太阳高度角和地物反射率计算像面的照度,根据电子倍增电荷耦合器件(EMCCD)探测器的噪声模型,计算出不同工作条件下的SNR。
对SNR的分析和实验,选择适当的电子倍增增益,可使微弱光谱信号SNR提高6倍。
2024/2/10 13:49:08 10.84MB 探测器 高光谱成 信噪比 电子倍增
1
在相机成像后基于matlab通过灭点计算,可将二维图像三维还原。
2024/2/6 8:19:02 3KB matlab 交点 灭点 相机成像
1
提出一种基于维纳-辛钦定理计算光学相干层析成像(OCT)系统轴向分辨率δz的通用方法:对光源的功率谱密度分布进行傅里叶逆变换,得到其自相干函数,由其半峰全宽值来获得δz。
利用该方法计算了高斯和非高斯分布光谱光源OCT系统的δz,通过与厂商给出的产品标称值相比较,验证了本方法对于高斯和非高斯分布光谱光源的正确性。
以超宽带白光光源为例,使用滤光片滤除边缘部分光谱后形成非高斯分布光谱,搭建实验系统,实测δz,所得结果与本方法的计算结果较为接近,实验验证了本方法的正确性。
本方法对于非高斯分布光谱光源OCT系统δz的计算结果,能为系统设计时的参数考虑与器件选择等提供依据。
1
此程序为强度关联成像的去噪算法程序.
2024/1/30 18:40:57 1KB .mat
1
共 310 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡