使用ise开发;
实现了三种类型一共43条指令;
包括了本次的实验报告;
通过定向处理了冲突,对于load和rr型指令采用暂停一周期再定向处理;
2015/7/2 1:34:13 8.69MB 多周期流水线
1
1、VirtualSerialPortKit(次要是用来作系统作虚拟串口的)2、NetworkSerialPortKit(通过网络远程访问串口)3、SerialPortRedirector(将串口重定向至网络端口)4、SerialPortSplitter(允许多个应用程序同时访问一个串口)5、SerialPortMapper(串口MAP工具,允许将虚拟串口连接到物理串口)6、AccessPort(串口调试工具)7、KeyGen(你懂得)
2021/3/8 8:11:38 22.13MB 虚拟 串口 重定向 映射
1
目录第一章无线传感器网络概述 6概述 61.1NS-2 61.2OPNET 61.3SensorSim 71.4EmStar 71.5GloMoSim 71.6TOSSIM 71.7PowerTOSSIM 8第二章OMNET++简介 9概述 92.1OMNeT++框架 92.1.1OMNeT++组成 92.1.2OMNeT++结构 102.2OMNeT++的安装 112.3OMNeT++语法 122.3.1NED语言 122.3.1.1NED总概述 122.3.1.2Ned描述的组件 132.3.1.3函数 152.3.2简单模块 172.3.2.1OMNET++中离散事件 172.3.2.2包传输模型 172.3.2.3定义简单模块 182.3.2.4简单模块中的主要成员函数 202.3.3消息 212.3.3.1cMessage类 212.3.3.2消息定义 212.3.3.3消息的收发 222.3.4模块参数、门及连接的访问 232.3.4.1消息参数的访问 232.3.4.2门和连接的访问 242.3.4.3门的传输状态 262.3.3.4连接的状态 262.4仿真过程 272.5配置文件omnetpp.ini 282.6结果分析工具 292.6.1矢量描绘工具Plove 292.6.2标量工具Scalar 2927、结束语 30第三章物理层仿真(信道) 323.1UWB的基础知识 323.1.1UWB信号的应用背景 323.1.2UWB信号的定义 323.1.3UWB的脉冲生成方式(高斯脉冲,非高斯脉冲) 343.1.4UWB的调制方式 343.1.5用功率控制多址接入方法来进行链路的建立控制 363.2用OMNeT++对UWB进行仿真 373.2.1算法仿真的概述 373.2.2算法的具体流程 393.2.3算法的主要代码 413.2.4仿真结果分析 583.2.5应用前景 58参考文献 59第四章MAC层仿真 60概述 604.1无线传感器网络MAC层特性及分类 604.1.1无线信道特性 604.1.2MAC设计特性分析 614.1.3无线传感器网络典型MAC协议的分类 614.2基于随机竞争的MAC协议 624.2.1S-MAC协议[12] 624.2.2T-MAC协议 644.2.3AC-MAC协议 654.3基于时分复用的MAC协议 654.3.1D-MAC协议 654.3.2TRAMA协议 664.3.3AI-LMAC协议 664.4其他类型的MAC协议 674.4.1SMACS/EAR协议 674.4.2基于CDMA技术的MAC协议 674.4.3DCC-MAC 684.5基于OMNeT++的MAC层协议仿真 694.5.1S-MAC协议的仿真 694.5.2S-MAC协议流程图 704.5.3S-MAC协议的分析 714.6小结 86参考文献 86第五章网络层仿真 88概述 885.1无线传感器网络路由协议研究 885.1.1无线传感器网络协议分类 885.1.2无线传感器网络中平面路由 905.1.3无线传感器网络中层次化路由 915.1.4经典算法的OMNET仿真 935.2无线传感器网络路由协议研究的发展趋势 1045.3无线传感器网络层路由协议与OMNET++仿真 1045.3.1无线传感器网络层路由与OMNET++仿真的基本概念[19] 1045.3.1.1传感器网络的体系结构 1055.3.1.1.1传感节点的物理结构 1055.3.1.1.2传感器网络的体系结构与网络模型 1065.3.2传感器网络层路由协议的基本概念 1065.3.2.1网络通信模式[28] 1065.3.2.1.1单播: 1075.3.2.1.2广播: 1075.3.2.1.3组播: 1085.3.2.2传感器网络层设计[29] 1085.3.3OMNET++仿真软件的基本概念 1095.4无线传感器网络路由协议引见 1105.4.1泛洪法(Flooding)[32] 1115.4.2定向扩散(DirectedDiffusion:DD)[33] 1125.4.3LEACH(EnergyAdaptiveClusteringHierarchy)[34] 1135.5.OMNET++仿真实例 1145.5.1泛洪
2017/6/14 11:33:17 2.44MB 仿真
1
Linux操作系统中shell是用户与系统内核沟通的中介,它为用户使用操作系统的服务提供了一个命令行界面,用户在shell提示符下输入的每个命令都由shell先解释,然后传给内核执行。
本实验要求用C语言编写一个简单的shell程序,希望达到如下目的:1、 能够执行外部程序命令,命令可以带参数;
2、 能够执行fg、bg、cd、history、exit等内部命令;
3、 使用管道和输入输出重定向;
4、 支持前后台作业,提供作业控制功能,包括打印作业的清单,改变当前运行作业的前/后台状态,以及控制造业的挂起、中止与继续运行;
5、 使用Make工具建立工程;
6、 使用调试器gdb来调试程序;
1
上例按计划组织的示例应用程序,API和站点:–开源版。
–商业版。
有关真实世界中开放源代码示例应用程序的请访问。
笔记每个示例都有一个Readme.md,其中包含更多详细信息。
带有错误页面,重定向,注入等的静态示例也可以应用于动态应用。
为了获得最佳延迟和冷启动时间,请将.lambda.memory中的.lambda.memory设置为1536所有示例都使用.name“app”,因而您不必每次都设置堆栈运行测试该测试套件用于质量检查测试,但是,如果要添加示例,则可以添加test.sh并使用goruntest.go-diross/someexample直接对其进行测试。
2017/8/5 5:41:51 3.04MB nodejs python java golang
1
PWM整流器虚拟电网磁链定向矢量控制仿真研讨rar,脉宽调制整流器;矢量控制;无电网电压传感器;磁链观测;仿真
2016/5/9 21:11:32 231KB 技术案例
1
该文档为三相无刷直流电机磁定向(FOC)控制,输出反电动势均为正弦波,欢迎下载。
有问题随时交流,大家一同学习
2020/3/13 8:41:37 91KB FOC
1
BLDC直流无刷电机控制参考材料,BLDC直流无刷电机控制参考材料
2021/10/18 1:49:39 3.18MB BLDC
1
Railsform_tag实验室目标使用form_tag构建功能性的Rails表单将路由助手作为参数传递给form_tag将带有方法的选项散列传递给form_tag使用text_field_tag和其他表单控件来创建输入构建一个new动作,该动作将呈现一个提交给create动作的表单指示该实验室当前失败的两个规格位于specs/features/student_spec.rb的formpage功能内。
在本实验中,您需要构建一个表单来创建一个新学生,将表单重定向回到new视图模板(通常,create操作会将其重定向到index),然后将表单参数打印到屏幕上。
以下是一些要记住的事项:绘制一个new并为students资源create路线将学生值打印到视图模板页面要记住的关键查看测试以查看您应该使用哪些字段值确保使用form_tag协助器资源在L
2017/10/25 12:53:01 42KB Ruby
1
有一些使用环境下,比如:某程序作者停止更新了,我们又没有源码,如果要继续用程序,那就得用IP重定向功能了。
以前是可以用APIHOOK和LSP来做的,现在的程序或者游戏好多都有保护,所以以前的方法不可行了,最好的办法是用TDI及WFP驱动来实现IP重定向功能!WFP及TDI拦截网络数据,然后R3使用层来取得IP实现IP重定向功能。
最终就实把了把目标进程中的某个IP或者全部网络数据,转发到指定的IP上。
1
共 144 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡