激光机大致分为三大部分组成:1、机械结构2、光电结构3、控制系统一、机械结构:由机身、工作平台、导轨滑块、皮带(或丝杠或齿轮齿条)、传动轴等1、导轨滑块分类以及作用:滚珠直线方轨、滚轮直线导轨。
用于直线往复运动,可在高负载的情况下实现高精度的直线运动。
滚珠直线方轨:速度慢,精度较高。
滚轮直线导轨:即外滑轨、内滑轨。
速度快,精度稍低。
咱们机器常用滑块品牌:台湾上银(HIWIN)、台湾银泰PMI等。
2、皮带:间隙和弹性大使精度稍低,使用寿命短。
皮带传动,传动平稳。
丝杠:分为普通丝杠和滚珠丝杠,其中滚珠丝杠精度最高,价格比较贵,普通丝杠相对精度低,价格也便宜。
丝杠的应用是将旋转运动通过丝母转变为直线运动。
丝杠传动,钢性较好,可以传递较大扭力,位置准确。
单丝杠与双丝杠的优缺点:单丝杠:安装维护方便,造价低。
但是受力点不好设计,运行的时候容易产生扭转力矩,从而影响机床的运行精度。
双丝杠:减少或消除不良力矩对机器运行精度的影响,因为是两根丝杠同时受力,所以单根丝杠受到的负载降低,有利于提高机器的运行速度和使用寿命。
齿轮齿条:在某些大型雕刻机上应用比较多,相对要求精度不高,但速度快、力量大。
二、光电部分:由激光管、光学反射镜、聚焦镜、激光电源以及配电柜组成。
1、激光管:分为CO2玻璃管、CO2射频管、光纤、YAG、半导体。
CO2激光管:主要应用与非金属材料的雕刻和切割。
常用硬质玻璃制成,一般采用层套筒式结构。
最里面一层是放电管,第2层为水冷套管,最外一层为储气管(就是咱们现在用的玻璃管)。
CO2射频管:主要也是应用于非金属材质。
和CO2玻璃管相比较使用寿命可以达到4万个小时左右,而普通玻璃管的寿命是3000个小时,热刺管10000个小时。
射频管的光斑只有0.07MM受热面积小雕刻更加精细。
玻璃管的光斑是0.25MM。
小功率的光纤、YAG、半导体(例如:10W、20W、50W)由于它们的光斑比较小精度比较高所以常常应用在激光打标机。
大功率的光纤、YAG(如、200W、400W、500W)用于金属激光切割机。
1
半导体激光器虽然价格昂贵且输出功率有限,但它在纤维光学传输系统和光盘播放机等尖端设备中已占一定地位。
由于松下电气公司半导体实验室研制出了两项新技术,现在,这些小型激光器可以更好地转向各种新应用。
2024/6/23 3:09:49 1.27MB
1
CCM手机摄像头培训资料,包括手机摄像头镜头结构,光学知识,工作原理等系统介绍,有助于加深对手机摄像头行业的了解。
2024/6/19 19:15:49 3.27MB CCM
1
LED二次光学设计中的透镜设计,根据非成像光学原理,利用matlab计算生成二维点坐标,可导入3维建模软件,生产模型。
代码经过测试,可成功完成计算。
大家可以参考一下
2024/6/19 14:25:46 8KB MATLAB LED光学设计
1
太赫兹波(THz)是一种介于微波和红外线波之间的电磁波。
由于生物体对THz波的独特响应性,太赫兹波在生物医学领域的应用研究特别是其与生物组织的相互作用成为了研究热点。
该研究旨在探索太赫兹波能否激发光敏剂产生光敏效应。
采用纳焦级宽谱(1~3THz)的脉冲太赫兹光源对光敏剂(PS)血卟啉单甲醚(HMME)照射30min,用DPBF作为单态氧的捕获剂检测单态氧产率。
采用相同的太赫兹光源照射常规培养的HepG2细胞,光学显微镜下观察细胞形态,MTT法检测细胞活性。
PS+THz组单态氧产率显著高于单纯太赫兹波组(21.04%vs.2.39%);
PS+THz组HepG2细胞形态较对照组略圆,细胞有收缩趋势;
细胞活性检测结果显示,太赫兹波照射后HMME孵育的HepG2细胞的活性降低至81.13%(THz组为99.21%)。
实验结果表明宽谱1~3THz纳焦级太赫兹波可激发光敏剂HMME,激发效率约为20%。
1
近轴光学的光学用几何光学的形式可以解决,这里有一个实现案例,可以给学习的过程提供一个思考
2024/6/5 15:41:33 66KB 光学追迹 MATLAB
1
使用MATLAB对4f光学系统进行仿真,菲涅尔滤波设计,调试通过,代码详细
2024/6/4 8:43:31 33KB MATLAB
1
描述飞航导弹红外点源导引头及其组件(探测器、制冷器及光学系统),最后介绍红外成像导引头的先进技术
2024/6/3 21:06:04 46.71MB 点源导引头 成像导引头
1
自适应光学揭示星系碰撞
2024/5/31 3:12:58 807KB 论文
1
ZEMAX光学设计指导含实例素材文件,包含基础设计实例,目视光学系统设计实例,显微镜设计,望远镜设计等
2024/5/20 17:39:41 49KB ZEMAX 光学设计
1
共 430 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡