调幅接收机是接收设备,是从信道上接收有用高频调幅信号并对其进行相关处理后,从中恢复出与发送端一致的原音频信号。
为此,它必须具有从众多信号中选择有用信号、抑制其它信号干扰的能力。
本课程设计是设计一个超外差式调幅接收机,所谓超外差,既在解调之前,先由变频电路将接收信号的载波频率变换为频率固定且低于载波频率的中频(465kHz)信号,然后再对中频信号进行放大、解调。
该课程设计是针对本次课程设计的要求,对我们进行综合性实践训练的实践学习环节,可以培养我们运用课程中所学的理论知识与实践紧密结合、独立地解决问题的能力
2024/2/1 2:22:20 137KB 调幅接收机
1
AD9832及其在高频测试仪中的应用DDS芯片AD9832的原理及应用DDS信号发生芯片AD9832_IcpdfCom数字式频率合成器──DDS数字式频率合成器锁相环路参数设计直接数字频率合成芯片AD9832原理及其典型应用设计直接数字式频率合成器AD9832与ADSP21065L接口设计及应用直接数字式频率合成器的杂波抑制度分析
2024/1/28 16:35:38 1.25MB DDS,AD9832,原理,应用
1
小功率调幅发射机的设计制作,MC1496乘法器的典型应用,高频功放,音频功放的设计制作。
2024/1/27 13:09:32 1.43MB 调幅发射机 高频功放
1
本程序采用16QAM调制方式,对一串2进制信源进行调制,用升余弦滚降函数进行基带调制,再调到高频信道;
在信道上加入高斯白噪声,运用匹配滤波器解调,画出解调星座图,运用最小欧氏距离译码判决,计算误比特率。
2024/1/20 11:34:27 105KB QAM 采样 星座图 编码
1
仿真课程:1.高频LC谐振放大电路;
参数要求:(1).中心频率10.7MHz;
(2).谐振放大倍数>20dB;(3).BW=1MHz;(4).矩形系数<10;(5).噪声系数:<7dB;(6).输入,输出阻抗为50欧姆。
2.丙类功率放大电路;
参数要求:1.电源电压5V;2.输入信号300mv;3.频率6MHz的正弦信号;
4.50欧姆负载上输出4.6v峰峰值正弦电压信号。
仿真电路图:3.LC谐振放大电路;
参数要求:(1)振荡器输出为正弦波,波形无明显失真;(2)输出频率范围:15MHz~25MHz;(3)输出频率稳定度:优于10-3;(4)输出电压峰-峰值:Vp-p=1V±0.1V。
说明:1.其中题目一是在Multisim13中仿真的;
2.其中题目二是在Multisim14中仿真的;
3.其中题目三是在Multisim10中仿真的;
4.每个课题包含仿真,PPT,以及LATEX编译的报告,请忽略名字;
2024/1/4 6:11:35 14.28MB 高频
1
基于高频电子线路的课程设计,使用multisim10.0软件进行仿真,经调制和解调后输出双边带条幅波。
课程设计中包含详细的调制和解调电路,低通滤波器电路,及其相应仿真波形和频谱图。
1
《集成电路掩模设计:基础版图技术》(翻译版)的译者曾在美国留学执教多年,后在清华大学微电子所任教,长期从事IC设计的研究和授课工作,作为国内IC设计领域的顶尖讲师,译笔流畅生动,既通俗易读,又保持原书风味,帮助您更加轻松愉快地掌握集成电路的掩模设计,激发您对于版图设计工作的热情!现在您可以轻轻松松,兴致盎然地学习和掌握集成电路版图设计了!《集成电路掩模设计:基础版图技术》(翻译版)作者ChristopherSaint,IBM的顶尖讲师之一,以轻松幽默的文笔为读者提供了一本图文并茂、实用易读的版图设计参考书,自下而上,由浅入深地构造了设计理念,毫无保留地讲述了从最初版图设计到最终仿真的方方面面。
内容覆盖了模拟电路、数字电路、标准单元、高频电路、双极型和射频集成电路的版图设计技术,讨论了版图设计中有关匹配、寄生参数、噪声、布局、验证、封装等问题及数据格式,最后还提代了两个实际的例子,CMOS放大器与双极型混频器的版图设计。
2023/12/21 20:30:18 48.15MB 集成电路版图 版图 集成电路
1
针对短文本特征稀疏、噪声大等特点,提出一种基于LDA高频词扩展的方法,通过抽取每个类别的高频词作为向量空间模型的特征空间,用TF-IDF方法将短文本表示成向量,再利用LDA得到每个文本的隐主题特征,将概率大于某一阈值的隐主题对应的高频词扩展到文本中,以降低短文本的噪声和稀疏性影响。
实验证明,这种方法的分类性能高于常规分类方法
2023/12/20 19:27:30 624KB LDA 短文本分类
1
东南大学信息学院通信电子线路实验报告仿真李芹苗澎multisimmatlab通电实验高频电路
2023/12/18 20:04:15 93.12MB 仿真
1
《高频功率电子学》直流-直流变换部分,一本经典的开关电源论著,理论分析、公式推导详尽,虽然出版较早,仍不失其指导意义。
1
共 262 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡