MATLAB中AR模型功率谱估计中AR阶次估计的实现-psd_my.rar(最近看了几个关于功率谱的问题,有关AR模型的谱估计,在此分享一下,希望大家不吝指正)(声明:本文内容摘自我的毕业论文——心率变异信号的预处理及功率谱估计)(按:AR模型功率谱估计是对非平稳随机信号功率谱估计的常用方法,但是其模型阶次的估计,除了HOSA工具箱里的arorder函数外,没有现成的函数可用,arorder函数是基于矩阵SVD分解的阶次估计方法,为了比较各种阶次估计方法的区别,下面的函数使用了'FPE','AIC','MDL','CAT'集中准则一并估计,并采用试验方法确定那一个阶次更好。
)………………………………以上省略……………………………………………………………………假设原始数据序列为x,那么n阶参数使用最小二乘估计在MATLAB中实现如下:Y=x;Y(1:n)=[];m=N-n;X=[];%构造系数矩阵fori=1:m  forj=1:n      X(i,j)=xt(ni-j);  endendbeta=inv(X'*X)*X'*Y';复制代码beta即为用最小二乘法估计出的模型参数。
此外,还有估计AR模型参数的Yule-Walker方程法、基于线性预测理论的Burg算法和修正的协方差算法等[26]。
相应的参数估计方法在MATLAB中都有现成的函数,比如aryule、arburg以及arcov等。
4.3.3AR模型阶次的选择及实验设计文献[26]中介绍了五种不同的AR模型定阶准则,分别为矩阵奇异值分解(SingularValueDecomposition,SVD)定阶法、最小预测定误差阶准则(FinalPredictionErrorCriterion,FPE)、AIC定阶准则(Akaika’sInformationtheoreticCriterion,AIC)、MDL定阶准则以及CAT定阶准则。
文献[28]中还介绍了一种BIC定阶准则。
SVD方法是对Yule-Walker方程中的自相关矩阵进行SVD分解来实现的,在MATLAB工具箱中arorder函数就是使用的该算法。
其他五种算法的基本思想都是建立目标函数,阶次估计的标准是使目标函数最小化。
以上定阶准则在MATLAB中也可以方便的实现,下面是本文实现FPE、AIC、MDL、CAT定阶准则的程序(部分):form=1:N-1  ……    %判断是否达到所选定阶准则的要求  ifstrcmp(criterion,'FPE')    objectfun(m1)=(N(m1))/(N-(m1))*E(m1);  elseifstrcmp(criterion,'AIC')    objectfun(m1)=N*log(E(m1))2*(m1);  elseifstrcmp(criterion,'MDL')    objectfun(m1)=N*log(E(m1))(m1)*log(N);  elseifstrcmp(criterion,'CAT')    forindex=1:m1        temp=temp(N-index)/(N*E(index));    end    objectfun(m1)=1/N*temp-(N-(m1))/(N*E(m1));  end    ifobjectfun(m1)>=objectfun(m)    orderpredict=m;    break;  endend复制代码orderpredict变量即为使用相应准则预测的AR模型阶次。
(注:以上代码为结合MATLAB工具箱函数pburg,arburg两个功率谱估计函数增加而得,修改后的pburg等函数会在附件中示意,名为pburgwithcriterion)登录/注册后可看大图程序1.JPG(35.14KB,下载次数:20352)下载附件 保存到相册2009-8-2820:54上传登录/注册后可看大图程序2.JPG(51.78KB,下载次数:15377)下载附件 保存到相册2009-8-2820:54上传下面本文使用3.2.1实验设计的输出结果即20例经预处理的HRV信号序列作为实验对象,分别使用FPE、AIC、MAL和CAT定阶准则预测AR模型阶次,图4.1(见下页)为其中一例典型信号使用不同预测准则其目标函数随阶次的变化情况。
从图中可以看出,使用FPE、AIC以及MDL定阶准则所预测的AR模型阶次大概位于10附近,即阶次10左右会使相应的目标函数最小化,符合定阶准则的要求,使用CAT定阶准则预测的阶次较小,在5~10之间。
图4.2(见下页)为另一例信号的阶次估计情况,从中也可以得到同样的结论。
(注,实验信号为实验室所得,没有上传)登录/注册后可看大图图片1.JPG(28.68KB,下载次数:5674)下载附件 保存到相册2009-8-2820:54上传
2025/6/27 16:08:25 6KB matlab
1
《水文小波分析》简要介绍小波分析的基本理论和常用的主要方法,重点论述小波分析方法在水文学中的各种应用。
主要内容包括小波分析的基本理论、小波函数及其构造、小波快速算法、水文序列滤波与去噪、水文过程复杂性描述、水文系统多时间尺度分析、水文序列奇异性及趋势性分析、水文预测预报和水文随机模拟等方面。
该书为国内水文小波分析领域的第一本专著。
其特点是内容新颖,理论联系实际,深入浅出,便于理解和实际分析计算。
作者王文圣,丁晶,李跃清等。
2025/6/26 14:45:04 12.31MB 水文小波分析
1
《dynamicprogramming:deterministicandstochasticmodels》writer:DimitriP.Bertsekas本书是经济学经典著作哦,稀缺啊
2025/6/26 12:13:34 7.18MB 经济学 随机模型 数学 动态规划
1
用遗传算法求函数f=x+10*sin(5*x)+7*cos(4*x)的最大值点:简单的单点交叉、基本位变异、赌轮盘选择、随机产生初始种群中的个体,求的最好解是24.689。
注:本算法基于matlab7.0,是我自己编写的,每个步骤都有详细的说明。
适用于遗传算法初学者。
1
用于弱信号检测的二阶匹配随机共振效应的SMSR仿真
2025/6/25 9:52:10 6KB SMSR
1
1. 随机搜索大素数,随机生成公钥和私钥。
2. 用公钥对任意长度的明文(字符)加密。
3. 用私钥对密文解密。
4. 界面简洁、友好便于操作。
2025/6/25 2:18:40 441KB RSA 加密解密 课程设计
1
基于tushare双均线与随机森林.ipynb
2025/6/24 21:36:53 252KB tushare python randomforest 双均线
1
统计分析软件SPSS的图书源代码--〉《SPSS在统计分析中的应用》,作者:朱建平等,印刷日期:2010-9-29源代码第二章~第十五章,文件大小443kb。
图书目录第1章SPSS软件概述1.1SPSS软件的基本特点和功能 11.2SPSS软件的安装、启动与退出 21.2.1SPSS软件的安装 21.2.2SPSS软件的启动 21.2.3SPSS软件的退出 31.3SPSS操作环境介绍 31.3.1SPSS软件的3个常用窗口 31.3.2SPSS菜单和工具栏 51.3.3SPSS对话框的基本操作方式 5第2章SPSS数据文件管理 72.1SPSS数据文件的结构 72.1.1SPSS数据文件的特点 72.1.2SPSS变量的属性 72.2建立一个数据文件 102.3读取外部数据 112.3.1读取Excel文件 122.3.2读取ASCII码文件 122.4SPSS数据的编辑和保存 152.4.1Edit菜单中的数据编辑功能 152.4.2Data菜单中的数据编辑功能 162.4.3SPSS数据的保存 16第3章数据整理 173.1数据排序 173.2数据排秩 183.3数据转置 193.4选择观测的子集 203.5数据分类汇总 223.6合并数据文件 233.6.1纵向合并(AddCases) 233.6.2横向合并(AddVariables) 243.7数据拆分 263.8计算新变量 283.9数据重新编码 303.10数据分组 313.11数据标准化 32第4章统计描述 344.1基本概念和原理 344.1.1频数分布 344.1.2集中趋势指标 344.1.3离散程度指标 354.1.4反映分布形态的描述性指标 354.2频数分析 364.2.1操作步骤 364.2.2实例结果分析 384.3描述性统计量 394.3.1操作步骤 394.3.2实例结果分析 404.4探索性数据分析 414.4.1操作步骤 424.4.2实例结果分析 444.4.3方差齐性检验的实例 46第5章统计推断 475.1统计推断概述 475.1.1参数估计 475.1.2假设检验 485.2单样本t检验 495.2.1理论与方法 495.2.2操作步骤 495.2.3实例结果分析 505.3两独立样本t检验 515.3.1理论与方法 515.3.2操作步骤 515.3.3实例结果分析 525.4配对样本t检验 535.4.1理论与方法 535.4.2操作步骤 545.4.3实例结果分析 54第6章方差分析 566.1方差分析概述 566.2单因素单变量方差分析 566.2.1理论和方法 566.2.2操作步骤 586.2.3实例结果分析 606.3多因素单变量方差分析 626.3.1理论与方法 626.3.2固定效应、随机效应和协变量 646.3.3操作步骤 656.3.4实例结果分析 676.3.5不考虑交互效应的多因素方差分析 706.3.6引入协变量的多因素方差分析 70第7章非参数检验 727.1非参数检验概述 727.2卡方检验(检验) 727.2.1理论与方法 727.2.2操作步骤 737.2.3实例结果分析 747.3二项分布检验 757.3.1理论与方法 757.3.2操作步骤 757.3.3实例结果分析 767.4游程检验 777.4.1理论与方法 777.4.2操作步骤 777.4.3实例结果分析 787.5单样本K-S检验 797.5.1理论与方法 797.5.2操作步骤 797.5.3实例结果分析 807.6两独立样本检验 807.6.1理论与方法 807.6.2操作步骤 827.6.3实例结果分析 827.7多独立样本检验 847.7.1理论与方法 847.7.2操作步骤 857.7.3实例结果分析 857.8两配对样本检验 877.8.1理论与方法 877.8.2操作步骤 887.8.3实例结果分析 887.9多配对样本检验 907.9.1
2025/6/24 16:07:56 444KB 统计学 统计分析软件 SPSS
1
为了保障整个系统的安全性,在线考试系统实现了分类验证的登录模块,通过此模块,可以对不同身份的登录用户进行验证,确保了不同身份的用户操作系统。
在抽取试题上,系统使用随机抽取试题的方式,体现了考试的客观与公正。
当考生答题完毕之后,提交试卷即可得知本次考试的得分,体现系统的高效性。
在后台管理上,分后台管理员管理模块和试题管理模块。
分别适应不同的用户,前者只有系统的高级管理员才能进入,对整个系统进行管理。
而后者只允许教师登录,教师可以对自己任教的科目试题进行修改,并且可以查看所有参加过自己任教科目的学生成绩。
1
离散型随机变量是概率论和统计学中的一个重要概念,特别是在解决实际问题,如高考数学中的应用题时,经常出现。
在2021版高考数学一轮复习的第十章,重点讲解了计数原理、概率以及随机变量及其分布,特别是离散型随机变量及其分布列。
离散型随机变量是指其可能取的值是有限个或可数无限多个,并且每个值发生的概率都是确定的。
1.题目中展示了如何通过分布列来求解常数c的值。
离散型随机变量的分布列必须满足概率的非负性和概率总和为1的条件。
例如,题目中的随机变量X的分布列,通过列出的几个概率值,可以建立方程求解c的值,这里得到c=1/3。
2.另一个例子中,随机变量ξ的概率分布列为P(ξ=k)=a*(1/3)^k,其中k=0,1,2。
通过概率总和为1,我们可以解出a的值,这里a=9/13。
3.在超几何分布的场景中,随机变量X表示在特定条件下选取样本中特定类型个体的数量。
例如,从15个村庄中选取10个,其中7个交通不便,我们关心的是选取的10个中交通不便的村庄数X。
根据超几何分布的概率公式,我们可以计算出P(X=k),在这里找到概率等于C(4,7)*C(6,8)/C(10,15)的情况,即P(X=4)。
4.当随机变
2025/6/19 1:10:44 2.42MB
1
共 1000 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡