《矩阵分析与应用(第2版)(精装)》系统、全面地介绍矩阵分析的主要理论、具有代表性的方法及一些典型应用。
全书共10章,内容包括矩阵代数基础、特殊矩阵、矩阵微分、梯度分析与最优化、奇异值分析、矩阵方程求解、特征分析、子空间分析与跟踪、投影分析、张量分析。
前3章为全书的基础,组成矩阵代数;
后7章介绍矩阵分析的主体内容及典型应用。
为了方便读者对数学理论的理解以及培养应用矩阵分析进行创新应用的能力,本书始终贯穿一条主线物理问题“数学化”,数学结果“物理化”。
与第1版相比,本书的篇幅有明显的删改和压缩,大量补充了近几年发展迅速的矩阵分析新理论、新方法及新应用。
  《矩阵分析与应用(第2版)(精装)》为北京市高等教育精品教材重点立项项目,适合于需要矩阵知识比较多的理科和工科尤其是信息科学与技术(电子、通信、自动控制、计算机、系统工程、模式识别、信号处理、生物医学、生物信息)等各学科有关教师、研究生和科技人员教学、自学或进修之用。
2024/3/4 17:13:07 14.42MB 矩阵学习
1
WorldClim版本2的标准(19)WorldClim生物气候变量。
它们是1970-2000年的平均值,每次下载都是一个“zip”文件,其中包含19个GeoTiff(.tif)文件,每个月使用一个变量。
2024/3/1 17:38:04 990.36MB Arcgis 全球 生物气候 30年
1
目录第1章线性神经网络的工程应用1.1系统辨识的MATLAB实现1.2自适应系统辨识的MATLAB实现1.3线性系统预测的MATLAB实现1.4线性神经网络用于消噪处理的MATLAB实现第2章神经网络预测的实例分析2.1地震预报的MATLAB实现2.1.1概述2.1.2地震预报的MATLAB实例分析2.2交通运输能力预测的MATLAB实现2.2.1概述2.2.2交通运输能力预测的MATLAB实例分析2.3农作物虫情预测的MATLAB实现2.3.1概述2.3.2农作物虫情预测的MATLAB实例分析2.4基于概率神经网络的故障诊断2.4.1概述2.4.2基于PNN的故障诊断实例分析2.5基于BP网络和Elman网络的齿轮箱故障诊断2.5.1概述2.5.2基于BP网络的齿轮箱故障诊断实例分析2.5.3基于Elman网络的齿轮箱故障诊断实例分析2.6基于RBF网络的船用柴油机故障诊断2.6.1概述2.6.2基于RBF网络的船用柴油机故障诊断实例分析第3章BP网络算法分析与工程应用3.1数值优化的BP网络训练算法3.1.1拟牛顿法3.1.2共轭梯度法3.1.3LevenbergMarquardt法3.2BP网络的工程应用3.2.1BP网络在分类中的应用3.2.2函数逼近3.2.3BP网络用于胆固醇含量的估计3.2.4模式识别第4章神经网络算法分析与实现4.1Elman神经网络4.1.1Elman神经网络结构4.1.2Elman神经网络的训练4.1.3Elman神经网络的MATLAB实现4.2Boltzmann机网络4.2.1BM网络结构4.2.2BM网络的规则4.2.3用BM网络解TSP4.2.4BM网络的MATLAB实现4.3BSB模型4.3.1BSB神经模型概述4.3.2BSB的MATLAB实现第5章预测控制算法分析与实现5.1系统辨识5.2自校正控制5.2.1单步输出预测5.2.2最小方差控制5.2.3最小方差间接自校正控制5.2.4最小方差直接自校正控制5.3自适应控制5.3.1MIT自适应律5.3.2MIT归一化算法第6章改进的广义预测控制算法分析与实现6.1预测控制6.1.1基于CARIMA模型的JGPC6.1.2基于CARMA模型的JGPC6.2神经网络预测控制的MATLAB实现第7章SOFM网络算法分析与应用7.1SOFM网络的生物学基础7.2SOFM网络的拓扑结构7.3SOFM网络学习算法7.4SOFM网络的训练过程7.5SOFM网络的MATLAB实现7.6SOFM网络在实际工程中的应用7.6.1SOFM网络在人口分类中的应用7.6.2SOFM网络在土壤分类中的应用第8章几种网络算法分析与应用8.1竞争型神经网络的概念与原理8.1.1竞争型神经网络的概念8.1.2竞争型神经网络的原理8.2几种联想学习规则8.2.1内星学习规则8.2.2外星学习规则8.2.3科荷伦学习规则第9章Hopfield神经网络算法分析与实现9.1离散Hopfield神经网络9.1.1网络的结构与工作方式9.1.2吸引子与能量函数9.1.3网络的权值设计9.2连续Hopfield神经网络9.3联想记忆9.3.1联想记忆网络9.3.2联想记忆网络的改进9.4Hopfield神经网络的MATLAB实现第10章学习向量量化与对向传播网络算法分析与实现10.1学习向量量化网络10.1.1LVQ网络模型10.1.2LVQ网络学习算法10.1.3LVQ网络学习的MATLAB实现10.2对向传播网络10.2.1对向传播网络概述10.2.2CPN网络学习及规则10.2.3对向传播网络的实际应用第11章NARMAL2控制算法分析与实现11.1反馈线性化控制系统原理11.2反馈线性控制的MATLAB实现11.3NARMAL2控制器原理及实例分析11.3.1NARMAL2控制器原理11.3.2NARMAL2控制器实例分析第12章神经网络函数及其导函数12.1神经网络的学习函数12.2神经网络的输入函数及其导函数12.3神经网络的性能函数及其导函数12.3.1性能函数12.3.2性能函数的导函数第13章Simulink神经网络设计13.1Simulink交互式仿真集成环境13.1.1Simulink模型创建1
2024/3/1 2:25:47 10.12MB MATLAB R2016a 神经网络 案例分析
1
光学新事物滤波器是一种光子学器件,只显示与输入图像相比新出现的或者是有变化的部分,而静止的图像部分在输出图像中不被显示。
光学新事物滤波器被广泛用于探测和跟踪移动的物体,相位测量以及生物医学等方面。
新事物滤波器所用的材料目前有两大类:一类是无机晶体,主要是钛酸钡晶体以及掺杂的钛酸钡晶体;
另外一类是有机光学材料,包括各种光折变聚合物和生物光子学材料细菌视紫红质等。
介绍了各种新事物滤波器的工作原理以及在各个领域的应用。
2024/2/26 1:10:42 1.69MB 光学新事 钛酸钡晶 光折变聚 optical
1
可用于计算生物多态性信息指数,很不错的一款软件,操作简单!
2024/2/24 4:46:52 859KB PIC
1
自述文件Timur是一个数据浏览器。
它主要用于消耗来自数据仓库Magma的数据。
与Timur互动的方式有以下三种:浏览“浏览”视图旨在允许简单的记录查看和编辑。
Magma发布描述每个模型的JSON模板和描述每个记录的JSON文档;
Timur仅使用从此模板构建的视图来渲染每个文档。
这使我们可以使用单个通用查看器浏览和编辑Magma中的任何记录。
由于Magma会发布某些固定数据类型,因此Timur通过检查模型的类型并适当地呈现它来显示每条记录(例如,“Date”类型的属性将在查看时根据当地时间设置格式,并显示日期/时间选择器编辑时)。
有时,我们希望向模型的视图中添加自定义属性,或更改特定属性的显示方式(例如,我们可能总是希望以开罗时间显示日期)。
在这些情况下,Timur将修补模板并记录以描述新属性,并在记录中包含其他必需数据,然后再将其传递给客户端(Web浏览器)
2024/2/20 0:09:12 883KB JavaScript
1
IDRISI是遥感与地理信息系统结合应用的系统,系统包括遥感图像处理、地理信息系统分析、决策分析、空间分析、土地利用变化分析、全球变化监测、时间序列分析、适宜性评价制图、地统计分析、元胞自动机土地动态变化趋势预测、图像分割、不确定性管理、生物栖息地评估等300多个实用而专业模块,这一软件集地理信息系统和图像处理功能于一体,依托克拉克大学研究计划的大力支持,为众多相关应用领域提供有力的研究与开发工具。
尤其在科学研究方面,IDRISI始终关注其理论、技术前沿的发展动向,不断吸收最新成果,并将其转化为扩展的功能模块加入到软件系统之中。
从1987年开始,共开发出了17个版本,2012年1月最新版IDRISISelva(热带雨林版)发布。
2024/2/11 14:58:24 64B idrisi
1
CambridgeUROP2020:CYCLOPS在识别生物数据节律中的应用作者:亨利·林(HenryLim)背景昼夜节律影响生理和行为的许多方面,并调节哺乳动物的许多过程,包括体温,血压和运动能力。
由于现有的大规模数据集很少包含一天中的时间,因此识别人类分子机制具有挑战性。
为了解决这个问题,我们结合了对周期性结构,进化保护和无监督机器学习的理解,以沿着周期性周期对无序的人体活检数据进行排序。
该项目解决了从此类数据推断时间标签以识别人类和其他哺乳动物基因的昼夜节律的问题。
在本项目中研究的算法(按周期性结构的循环排序(CYCLOPS))利用进化守恒和机器学习来识别高维数据中的椭圆结构。
通过这种结构,CYCLOPS估计每个样本的相位。
我们首先使用人工生成的振荡数据,再使用按时间排序的鼠标和人类数据,对CYCLOPS进行了验证,并证明了其一致性。
介绍CYCLOPS的
2024/2/11 2:12:40 15.52MB JupyterNotebook
1
2020年中国细胞生物产业和商业应用分析报告.pdf
2024/2/7 2:36:39 3.78MB 细胞生物
1
三相等高线图m文件,用于三角坐标分析,适用于化学,物理,生物等行业
2024/2/3 13:52:25 1KB m文件
1
共 275 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡