识别0-9十个数字,BP神经网络数字识别源代码使用说明第一步:训练网络。
使用训练样本进行训练。
(此程序中也可以不训练,因为笔者已经将训练好的网络参数保存起来了,读者使用时可以直接识别)第二步:识别。
首先,打开图像(256色);
再次,进行归一化处理,点击“一次性处理”;
最后,点击“R”或者使用菜单找到相应项来进行识别。
识别的结果显示在屏幕上,同时也输出到文件result.txt中。
该系统的识别率一般情况下为90%。
此外,也可以单独对打开的图片一步一步进行图像预处理工作,但要注意,每一步工作只能执行一遍,而且要按顺序执行。
具体步骤为:“256色位图转为灰度图”-“灰度图二值化”-“去噪”-“倾斜校正”-“分割”-“标准化尺寸”-“紧缩重排”。
注意,待识别的图片要与win.dat和whi.dat位于同一目录,这两文件保存训练后网络的权值参数。
具体使用请参照书中说明。
2024/12/5 8:55:53 60KB BP神经网络
1
图像去噪,里面包括了中值滤波、均值滤波、混合滤波等代码,还考虑到硬件便于实现,进行了字节对齐,效果不错的
2024/12/5 5:40:32 3.41MB 图像去噪
1
给定一有效信号(正弦),加高斯白噪声,信噪比为20dB,设计一IIR滤波器。
已知通带衰减0.3dB,阻带衰减30dB,其他自选。
并且还设计一FIR滤波器。
1
数字图像处理课设,包括各种图像的变换,比如灰度,加噪,去噪等等,内容丰富,论文格式
2024/12/3 15:25:58 386KB SHU ZI TUXAING  CHULI
1
使用偏微分方程(PDE)进行图像去噪的matlab代码集合
2024/11/29 11:21:39 243KB matlab
1
基于VB6.0编写的简单数字图像处理软件,有基本的读取及显示BMP图片,加噪去噪处理,傅里叶变换,FFT,直方图均衡化等等。
不完善,仅供参考。
2024/11/24 5:41:15 368KB 数字图像处理
1
数字图像处理是研究如何通过计算机技术处理和分析图像的学科,主要应用于图像增强、恢复、分割、特征提取和识别等任务。
数字图像处理的第三版由RafaelC.Gonzalez和RichardE.Woods编写,二人来自田纳西大学和MedDataInteractive公司。
这本书对数字图像处理领域进行了全面的介绍,涵盖了数字图像处理的历史背景、基本概念、技术和算法。
冈萨雷斯的这本书被认为是该领域的重要参考资料。
数字图像处理可以应用于医疗成像、遥感、安全监控、图像压缩、机器视觉等多个领域。
例如,在医疗成像中,数字图像处理可以帮助医生更清晰地观察患者身体组织的结构,从而提高诊断的准确性;
在遥感领域,通过处理和分析遥感图像可以获取地球表面的信息,用于天气预报、地理信息系统的建立等。
数字图像处理涉及的算法和工具主要包括图像的采集、处理、分析和理解等步骤。
图像采集是使用摄像头、扫描仪等设备将图像转换为计算机可以处理的数据形式;
图像处理通常包括图像的预处理(如去噪、对比度增强)、图像变换(如傅里叶变换、小波变换)和图像恢复等;
图像分析主要涉及到图像分割、特征提取、模式识别等内容;
图像理解则试图使计算机能够解释图像内容,达到类似于人类理解图像的水平。
数字图像处理的起源可以追溯到20世纪50年代末60年代初,当时人们开始使用计算机技术对图像进行处理。
早期的数字图像处理主要用于空间探索、卫星图像处理等领域,随着计算机技术的发展和图像处理理论的完善,数字图像处理逐渐扩展到生物医学、工业、安全等其他领域。
数字图像处理的一个重要分支是数字视频处理,其关注如何处理连续的图像序列,以实现视频压缩、视频增强、运动分析等功能。
视频处理技术在高清电视、网络视频、电影后期制作等行业有着广泛的应用。
数字图像处理是一个不断发展的领域,随着人工智能技术的发展,基于深度学习的图像处理技术成为当前的研究热点。
深度学习模型,尤其是卷积神经网络(CNN)在图像识别、分类、目标检测和图像分割等方面显示出了巨大的潜力。
总结来说,数字图像处理是通过计算机技术来处理图像数据,使之更适合人眼或机器分析的一门技术。
随着技术的进步和应用的拓展,它在多个行业中发挥着越来越重要的作用。
冈萨雷斯的《数字图像处理》作为该领域的经典教材,为学习和研究这一领域的专业人士提供了宝贵的资源和参考。
2024/11/18 17:16:43 19.14MB digital image processing
1
从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。
维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。
对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。
2024/11/18 12:22:58 4KB 维纳滤波 语音增强
1
对于初学者来说,比较好的小波阈值去噪程序
2024/11/15 12:15:56 244KB 小波阈值图像去噪源代码
1
第一章绪论  1.1信息、消息和信号  1.2通信、电信及无线电通信  1.3通信系统  1.4通信侦察系统与监测网  1.5无线电监测和通信侦察的主要任务  1.6本书研究内容  第二章噪声  2.1噪声的一般描述  2.2噪声的表示方法  2.3噪声系数  2.4系统的噪声温度  2.5载噪比与信噪比  2.6噪声的一些特性  第三章信号  3.1概述  3.2电信号特性  3.3空间电磁信号的特性  3.4信号的周期平稳特性、运算和网络响应  3.5信号的分割与应用  参考文献  第四章信号电平预测  4.1接收天线的等效电路和接收功率  4.2接收天线特性  4.3传输线与连接器  4.4电平预测  4.5小结  参考文献  第五章超外差接收机  第六章侦察与监测接收机  第七章接收机的几个指标讨论  第八章通信侦察与信号监测功能  第九章测向与定位
2024/11/15 4:21:45 29.12MB 无线电监测 通信 侦察
1
共 610 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡