基于MATLAB的Fisher线性判别代码,里面详细引见了利用MATLAB实现Fisher线性判别
2015/9/19 19:23:38 5KB FisherMATLAB
1
从影片中抽取一帧以相邻帧为参考判别运动物体并用红框标出物体
2018/7/11 21:10:02 526KB 边界 运动物体
1
从影片中抽取一帧以相邻帧为参考判别运动物体并用红框标出物体
2018/7/11 21:10:02 526KB 边界 运动物体
1
能判别奇偶校验的串口调试助手绝对好用
2017/1/19 18:09:41 1.93MB 奇偶校验 串口调试助手
1
提出了一种基于贝叶斯模式识别的激光雷达大气遥感灰霾组分识别的方法。
引见了灰霾组分模式识别模型的建立过程,并利用具体的贝叶斯判别函数作为灰霾粒子光学特征向量的选择依据对灰霾粒子进行识别分类。
采用计算机仿真实现了该灰霾组分模式识别模型,并通过两种自验证方法检验了模型的正确性和稳定性。
讨论了该模型对现有大气遥感激光雷达的适用性,凸显了偏振高光谱分辨率激光雷达(HSRL)的优势。
2016/4/24 3:07:25 5.28MB 遥感 激光雷达 灰霾 模式识别
1
提出了一种基于贝叶斯模式识别的激光雷达大气遥感灰霾组分识别的方法。
引见了灰霾组分模式识别模型的建立过程,并利用具体的贝叶斯判别函数作为灰霾粒子光学特征向量的选择依据对灰霾粒子进行识别分类。
采用计算机仿真实现了该灰霾组分模式识别模型,并通过两种自验证方法检验了模型的正确性和稳定性。
讨论了该模型对现有大气遥感激光雷达的适用性,凸显了偏振高光谱分辨率激光雷达(HSRL)的优势。
2016/4/24 3:07:25 5.28MB 遥感 激光雷达 灰霾 模式识别
1
模式识别中贝叶斯算法判别身高体重matlab实现1)应用单个特征进行实验:以(a)身高或者(b)体重数据作为特征,在正态分布假设下利用最大似然法或者贝叶斯估计法估计分布密度参数,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到测试样本,调查测试错误情况。
在分类器设计时可以调查采用不同先验概率(如0.5对0.5,0.75对0.25,0.9对0.1等)进行实验,调查对决策规则和错误率的影响。
2)应用两个特征进行实验:同时采用身高和体重数据作为特征,分别假设二者相关或不相关,在正态分布假设下估计概率密度,建立最小错误率Bayes分类器,写出得到的决策规则,将该分类器应用到训练/测试样本,调查训练/测试错误情况。
比较相关假设和不相关假设下结果的差异。
在分类器设计时可以调查采用不同先验概率(如0.5vs.0.5,0.75vs.0.25,0.9vs.0.1等)进行实验,调查对决策和错误率的影响。
3)自行给出一个决策表,采用最小风险的Bayes决策重复上面的某个或全部实验。
2016/6/25 22:06:17 669KB 模式识  matla
1
信息安全竞赛判别
2015/2/27 11:45:37 14KB 信息安全竞赛判断
1
可以用来做时间序列分析哦,包括模式判别,模型检验,大家共同窗习啊
1
python题库,包含填空题,判别题,操作题等。
有详细答案。
2018/1/14 12:02:39 180KB python
1
共 152 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡