内包括protus仿真以及protel电路原理图,keil程序运行无误,论文,并且有学习视频及软件压缩包。
功能介绍:本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统STC89C52单片机作为控制平台对风扇转速进行控制。
可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。
所设高低温值保存在温度传感器DS18B20内部E2ROM中,掉电后仍然能保存上次设定值,性能稳定,控制准确。
2023/6/8 21:53:47 30.2MB 单片机 电路原理图 程序 毕业设计
1
许多Oracle管理人员只要看见在一个SQL查询的WHERE语句出现了一列的话就会为它分配索引。
虽然这个方法能够让SQL运行得更快速,但是基于功能的Oracle索引使得数据库管理人员有可能在数据表的行上过度分配索引。
过度分配索引会严重影响关键Oracle数据表的性能。
在Oracle9i出现以前,没有办法确定SQL查询没有使用的索引。
Oracle9i有一个工具能够让你使用ALTERINDEX命令监视索引的使用。
你可以查找这些没有使用的索引并从数据库里删除它们。
2023/6/8 2:39:39 29KB 软件
1
基于宏微观分析的碳纤维增强高分子复合材料强度性能表征
2023/6/8 0:26:25 1.51MB 研究论文
1
采用激光熔覆技术在45#钢表面分别制备了Ni60A涂层及SiC/Ni60A复合涂层。
采用光学显微镜(OM)、扫描电镜(SEM)和X射线衍射(XRD)仪对涂层进行了显微组织和物相分析,并测试了熔覆层的显微硬度和耐冲蚀磨损性能。
结果表明,在激光作用下,SiC由于具有较小的生成热容易溶解在合金涂层中。
熔覆层的物相主要由γ(Ni-Cr-Fe)固溶体及Fe7C3,Fe0.79C0.12Si0.09等化合物组成。
在固溶强化、第二相强化及细晶强化的共同作用下,SiC/Ni60A涂层的抗冲蚀性能显著提高,涂层的显微硬度也明显增加。
2023/6/7 18:40:39 874KB 激光技术 激光熔覆 SiC/Ni基
1
实验5-1IBMRationalRobot实现自动软件测试实验5-2Webstress性能自动测试实验5-3JUnit和NUnit的自动测试
2023/6/7 12:07:29 4.34MB Robot Webstress
1
一、引言自适应噪声抵消技术是一种能够很好的消除背景噪声影响的信号处理技术,应用自适应噪声抵消技术,可在未知外界干扰源特征,传递途径不断变化,背景噪声和被测对象声波相似的情况下,能够有效地消除外界声源的干扰获得高信噪比的对象信号。
从理论上讲,自适应干扰抵消器是基于自适应滤波原理的一种扩展,简单的说,把自适应滤波器的期望信号输入端改为信号加噪声干扰的原始输入端,而它的输入端改为噪声干扰端,由横向滤波器的参数调节输出以将原始输入中的噪声干扰抵消掉,这时误差输出就是有用信号了。
在数字信号采集、处理中,线性滤波是最常用的消除噪声的方法。
线性滤波容易分析,使用均方差最小准则的线性滤波器能找到闭合解,若噪声干扰类型为高斯噪声时,可达到最佳的线性滤波效果。
计算机论文www.lunwendingzhi.com;
机械毕业论文www.lunwenwanjia.com在实际的数字信号采集中,叠加于信号的噪声干扰往往不是单一的高斯噪声,而线性滤波器所要求的中等程度噪声偏移,使线性滤波器对非高斯噪声的滤波性能下降,为克服线性滤波器的缺点,往往采用非线性滤波器,所以本文采用神经网络对信号进行滤波处理。
二、基于BP算法和遗传算法相结合的自适应噪声抵消器在本文中,作者主要基于自适应噪声对消的原理对自适应算法进行研究,提出了一种新的算法,即BP算法和遗传算法相结合的自适应算法。
作者对BP网络的结构及算法作了一个系统的综述,分析了BP算法存在的主要缺陷及其产生的原因。
传统的BP网络既然是一个非线性优化问题,这就不可避免地存在局部极小问题,网络的极值通过沿局部改善的方向一小步进行修正,力图达到使误差函数最小化的全局解,但实际上常得到的使局部最优点。
管理毕业论文网www.yifanglunwen.com;
音乐毕业论文www.xyclww.com;
英语毕业论文www.lanrenbanjia.com;
学习过程中,下降慢,学习速度缓,易出现一个长时间的误差平坦区,即出现平台。
通过对遗传算法文献的分析、概括和总结,发现遗传算法与其它的搜索方法相比,遗传算法(GA)的优点在于:不需要目标函数的微分值;
并行搜索,搜索效率高;
搜索遍及整个搜索空间,容易得到全局最优解。
所以用GA优化BP神经网络,可使神经网络具有进化、自适应的能力。
BP-GA混合算法的方法出发点为:经济论文www.youzhiessay.com教育论文www.hudonglunwen.com;
医学论文网www.kuailelunwen.com;
(1)利用BP神经网络映射设计变量和目标函数、约束之间的关系;
(2)用遗传算法作实现优化搜索;
(3)遗传算法中适应度的计算采用神经网络计算来实现。
BP-GA混合算法的设计步骤如下:(1)分析问题,提出目标函数、设计变量和约束条件;
(2)设定适当的训练样本集,计算训练样本集;
(3)训练神经网络;
(4)采用遗传算法进行结构寻优;
(5)利用训练好的神经网络检验遗传算法优化结果。
若满足要求,计算结束;
若误差不满足要求,将检验解加入到训练样本集中,重复执行3~5步直到满足要求。
通过用短时傅立叶信号和余弦信号进行噪声对消性能测试,在单一的BP算法中,网络的训练次数、学习速度、网络层数以及每层神经元的节点数都是影响BP网络的重要参数,通过仿真实验可以发现,适当的训练次数可以使误差达到极小值,但是训练次数过多,训练时间太长,甚至容易陷入死循环,或者学习精度不高。
学习速度不能选择的太大,否则会出现算法不收敛,也不能选择太小,会使训练过程时间太长,一般选择为0.01~0.1之间的值,再根据训练过程中梯度变化和均方误差变化值确定。
基于梯度下降原理的BP算法,在解空间仅进行单点搜索,极易收敛于局部极小,而GA的众多个体同时搜索解空间的许多点,因而可以有效的防止搜索过程收敛于局部极小,只有算法的参数及遗传算子的操作选择得当,算法具有极大的把握收敛于全局最优解。
使用遗传算法需要决定的运行参数中种群大小表示种群中所含个体的数量,种群较小时,可提高遗传算法的运算速度,但却降低了群体的多样性,可能找不出最优解;
种群较大时,又会增加计算量,使遗传算法的运行效率降低。
一般取种群数目为20~100;
交叉率控制着交叉操作的频率,由于交叉操作是遗传算法中产生新个体的主要方法,所以交叉率通常应取较大值,但若过大的话,又可能破坏群体的优良模式,一般取0.4~0.99;
变异率也是影响新个体产生的一个因素,变异率小,产生个体少,变异率太大,又会使遗传算法变成随机搜索,一般取变异率为0.0001~0.1。
由仿真结果得知,GA与BP算法的混合算法不论是在运行速度还是在运算精度上都较单纯的BP算法有提高,去噪效果更加明显,在信噪比的改善程度上,混合算法的信噪
2023/6/7 6:07:05 2KB BP算法 遗传算法 matlab 源码
1
高功率光纤激光器以其优越的性能和超值的价格,在光通信、印刷、打标、材料加工、医疗等领域有着广阔的应用
2023/6/7 5:27:09 181KB LabVIEW
1
809协议网关应用采用mina+spring架构,独立于其他应用,主要负责维护的tcp双通道链接、上行以及下行消息的解码、编码。
接入网关采用json消息通过MQ消息(支持ActiveMQ)队列与业务平台进行交互,能够无缝接入各种异构系统。
本网关应用已历经并通过多次交通部部标的检测,性能稳定,适用于车辆监控平台之间的实时数据交换,经测试在普通pc机上,单个网关应用可支持1000wGPS数据/小时的数据处理能力。
2023/6/6 10:24:46 108KB mina 车辆监控 部标协议 jtt809协议
1
利用matlab实现不同均衡算法(如LMSMMSE)下的均衡器,对信道损耗的补偿,并实现了各自的BER性能。
有助于掌握各自的理论。
2023/6/6 9:19:25 104KB 自适应 均衡 matlab DFE
1
IEEE802.11系列协议OPNET建模与性能测试,罗维,姜秀柱,本文讨论了IEEE802.11系列协议的建模与性能问题。
基于对IEEE802.11a/b/g三个不同版本的协议和目前功能最强大的网络仿真工具OPNET软件的研究
2023/6/5 1:04:05 596KB 计算机技术
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡