比一般的书籍要高清很多作者:龚建伟姜岩徐威讲述无人驾驶领域的模型预测及控制的书籍,希望能协助到大家学习无人驾驶的相关知识。
2018/6/16 7:09:17 52.99MB 无人驾驶 人工智能 模型预测
1
陈洪教授书籍:模型预测节制。



2019/8/5 22:52:45 75.41MB 模型预测控制 陈虹 FPGA 嵌入式
1
该文件包括效果展示视频和训练生成的xml文件由于该方法要求负样本与场景相关,因此建议自己采集视频进行样本获取及后续处理,直接使用xml文件在其他场景的效果并不一定好。
本实验也有许多问题,①比如远处的检测框会较早的消失,这个原因应该是抽帧截取正样本时,远处的车辆样本选取的较少,建议新实验中每个位置上的正样本都要考虑到。
②偶尔会出现检测框消失的现象,这个没法避免的..建议使用卡尔曼滤波对消失的检测框进行预测然后校正!关于样本集会在后面半个月放出,最近事比较多,等开学会有点时间...本演示视频只对单一方向的车辆样本进行训练,并且包含了晴天多云雨天等场景的样本共同训练,正样本数量为4300多份。
如果想尝试双向车道的训练,建议正样本数量达到1w左右的量级,负样本为正样本的2-5倍,关于xml文件的训练参考文章XXX,也可以换成其他特征进行训练,如LBP特征(听说训练花费时间大大降低,精度差不多,并没有进行试验),有兴味的可以试一试,多多交流!
2019/2/6 19:12:18 2.83MB 车辆检测
1
本文基于SAS软件利用ARMA模型完成了对平稳时间序列的拟合预测。
2020/8/13 20:39:29 143KB ARMA模型 拟合预测 平稳时间序列
1
此matlab程序次要用于通过LESLIE模型对人口结构和数量进行预测,并做出相关图形
2016/6/5 4:52:37 13KB 人口预测
1
基于KNN实现的手写体数字识别C++代码,输出结果有混淆矩阵、召回率、训练精确率、预测数据输出等。
2021/2/4 10:30:33 6KB 手写体数字
1
《模型预测控制》作者陈虹,经典图书,接待爱学习的老铁们下载。
2018/9/23 4:32:34 75.41MB 模型预测 控制
1
#语料库阐明------------------------------------------------------------------------##词典1、HowNet情感词典2、ntusd情感词典3、情感分析停用词表4、结巴分词自定义词典5、常用语词典,包括流行新词,网络流行词,手机词汇,粤语,潮语潮词、阿里巴巴-通讯产品词汇等##手机评论数据1、HTC手机评论,包括打分,共302篇1-52、魅族手机评论,包括打分,共529篇1-53、诺基亚手机评论,包括打分,共614篇1-54、OPPO手机评论,包括打分1-5,共553篇5、三星手机评论,包括打分1-5,共762篇6、中兴手机评论,包括打分1-5,共785篇7、摩托罗拉手机评论,包括打分1-5,共990篇8、整合:正面评论1084篇,负面评论524篇##淘宝商品评论数据1、正面评论一万篇,负面评论一万篇2、待预测的语料一万篇##2012微博情感分析数据共三个任务,数据集来自腾讯微博,每个话题1,000条,总约两万条微博1、观点句与非观点句的判别2、情感分类3、情感要素抽取##谭松波酒店评论语料正负样本不平衡,正样本7,000,负样本3000,共10,000.##酒店、服装、水果、平板、洗发水正负样本均5,000,总样本数50,000
2015/3/9 14:02:03 12.81MB 中文语料 情感分析 数据集
1
近年来卷积神经网络框架被成功地应用到目标跟踪领域,并取得了较为稳健的跟踪结果。
基于此思想,提出一种基于定位-分类-匹配模型的目标跟踪方法。
首先,在定位模型中,利用前一帧的位置信息预测当前帧中的候选目标区域。
然后,采用已训练的深度特征对候选区域进行类间筛选,选出N个次优目标区域。
最后,利用常规颜色特征对次优目标区域进行类内寻优匹配,从而确定最终的跟踪目标。
与此同时,分别对定位、分类中的网络进行更新,并对建立的匹配模型进行在线实时更新,使得其对目标的描述愈加准确。
在OTB50和OTB100标准数据库上进行实验测试,结果表明,提出的跟踪方法在快速运动、相似物体干扰、复杂背景等条件下具有较好的跟踪稳健性。
1
长短期记忆(LSTM)是一种特殊的RNN,主要是为了处理长序列训练过程中的梯度消失和梯度爆炸问题。
简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
对CPI数据进行预测
2021/2/1 14:52:15 3KB LSTM
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡