设计并研究了一种采用激光打标机在塑料光纤(POF)表面雕刻散射点的侧面均匀发光光纤,可用作自由立体显示器的定向背光光源。
通过建立激光打标凹形散射点的POF均匀发光模型,推导了POF均匀发光的散射点坐标计算公式。
针对设计的凹形散射点参数,用SolidWorks软件构建侧面发光光纤模型,用TracePro软件进行光线追迹仿真。
结果表明,散射点长度半圆心角(用于表征凹形散射点的深度和横向长度)的微小变化对发光亮度均匀度影响较大,而凹形散射点轴向宽度的微小变化对POF侧面发光均匀度影响很小。
对各参数进行设计优化后,得到POF半径R=0.25mm,凹形散射点宽度d=0.15mm,散射点长度半圆心角θ=15°,POF长度L=600mm,TracePro软件仿真得到POF侧面发光亮度均匀度为87.5%。
根据设计优化后的参数采用激光打标机进行激光雕刻POF表面散射点,得到单根POF的侧面发光亮度均匀度为80.90%。
将100根侧面发光POF紧密排布成面光源,得到面光源发光亮度均匀度为88.91%。
实验结果表明所提出的设计方法和制造的POF面光源能满足自由立体显示器指向性背光源设计的要求。
2015/4/21 13:42:10 10.97MB 激光技术 侧面发光 激光打标 发光均匀
1
SAR图像变化检测方法,包括了对数比和均值比两种较为经典的仿真。
本方法从图像像素的角度出发,对图像像素的灰度值进行操作。
分别才用了均值法和对数比法,然后。
本代码适合老手使用,能让初学者从图像像素灰度值的角度去理解SAR图像形变监测的理论
2018/5/5 14:23:13 278KB matlab SAR image
1
基于AndroidStudio的打砖块游戏,点开直接进入游戏界面,单击开始游戏,砖块颜色随机产生,小球消除砖块有音效。
特点就是挡板随手机传感器变化而变化。
有兴味可以学习下。
2017/4/3 12:18:08 27.46MB Android Studio 打砖块 弹球
1
神光Ⅲ原型装置终端靶场采用大口径取样光栅对透射的351nm激光取样进行脉冲波形测试,由于取样光聚焦点光线不是等光程的,该取样方式将导致时间波形的畸变。
建立了光栅全口径取样后聚焦的三倍频激光脉冲波形叠加模型,模型考虑了激光光束近场强度分布和近场各点到聚焦点的光程变化两个主要影响因素,研究了取样脉冲波形的叠加特性,给出了该测量技术的适用范围和测量精度。
结果表明,对于取样光束口径为290mm×290mm,取样焦距为1380mm,取样角为11.5°的基于光栅取样的脉冲波形测量系统,只需被测激光脉宽大于1ns,取样后脉冲波形原始波形一致,没有展宽。
实验标定结果表明,神光Ⅲ原
2016/10/13 19:31:36 1.05MB 测量 光栅 叠加法 高功率激
1
书籍目录目录第1章基本概念11.1什么是设计模式21.2设计模式的作用31.3GRASP模式的分类41.4GoF设计模式的分类41.5模式的学习阶段6第2章担任任地设计对象——GRASP92.1InformationExpert(信息专家)112.2Creator(创造者)132.3LowCoupling(低耦合)142.4HighCohesion(高内聚)152.5Controller(控制器)172.6Polymorphism(多态)182.7PureFabrication(纯虚构)192.8Indirection(间接)202.9ProtectedVariations(受保护变化)21第3章GoF-CreationalDesignPatterns创建型设计模式233.1SimpleFactoryPattern(简单工厂模式)243.1.1定义243.1.2现实例子——国旗生产厂263.1.3C#实例1——电子付款系统263.1.4C#实例2——学校登录系统293.1.5Java实例——手机简单工厂323.1.6优势和缺陷343.1.7应用情景343.2FactoryMethodPattern(工厂方法模式)353.2.1定义353.2.2现实例子——兵工厂363.2.3C#实例——多文档系统373.2.4Java实例——扩展了的手机工厂413.2.5优势和缺陷443.2.6应用情景443.3AbstractFactoryPattern(抽象工厂模式)453.3.1定义453.3.2现实例子——扩展了的兵工厂483.3.3C#实例——大陆生态系统493.3.4Java实例——电脑产品523.3.5优势和缺陷573.3.6应用情景573.4BuilderPattern(建造者模式)583.4.1定义583.4.2现实例子——快餐店603.4.3C#实例——车间造车613.4.4Java实例——建造房屋653.4.5优势和缺陷693.4.6应用情景703.5PrototypePattern(原型模式)703.5.1定义703.5.2现实中的拷贝-粘贴713.5.3C#实例——颜色管理器723.5.4Java实例——简单ToolBar743.5.5ShallowCopy与DeepCopy763.5.6优势和缺陷823.5.7应用情景823.6SingletonPattern(单例模式)823.6.1定义823.6.2现?抵械牡ダ??猈indowsTaskManager833.6.3C#实例——负载均衡控制器843.6.4Java实例——系统日志863.6.5DoubleCheckLocking(双检锁)893.6.6优势和缺陷933.6.7应用情景93第4章GoF-StructuralDesignPatterns结构型设计模式954.1AdapterPattern(适配器模式)964.1.1定义964.1.2现实中的实例——电脑电源适配器974.1.3C#实例——化学数据银行984.1.4Java实例——清洁系统1024.1.5优势和缺陷1044.1.6应用情景1044.2BridgePattern(桥接模式)1044.2.1定义1044.2.2现实中的实例——男人的约会1064.2.3C#实例——商业对象与数据对象1074.2.4Java实例——不同系统的图像处理1124.2.5优势和缺陷1144.2.6应用情景1154.3CompositePattern(组合模式)1154.3.1定义1154.3.2组合模式的现实应用——资源管理器1174.3.3C#实例——图形树状对象结构1184.3.4Java实例——文档格式化1214.3.5优势和缺陷1244.3.6应用情景1254.4DecoratorPattern(装饰模式)1254.4.1定义1254.4.2现实中的装饰模式——相架1264.4.3C#实例——图书馆中的项目1274.4.4Java实例——自定义JButton1314.4.5优势和缺陷1334.4.6应用情景1344.5FacadePattern(外观模式)1344
2020/1/13 6:24:51 1.21MB 设计 模式 设计模式 设计模式之禅
1
多个函数利用多种粒子群算法处理优化问题:用二阶粒子群优化算法求解无约束优化问题用二阶振荡粒子群优化算法求解无约束优化问题用混沌粒子群优化算法求解无约束优化问题用基于选择的粒子群优化算法求解无约束优化问用基于交叉遗传的粒子群优化算法求解无约束优化问用基于模拟退火的粒子群优化算法求解无约束优化问题用随机权重粒子群优化算法求解无约束优化问题用学习因子同步变化的粒子群优化算法求解无约束优化问题用学习因子异步变化的粒子群优化算法求解无约束优化问题
2021/4/23 22:12:23 8KB 粒子群 优化
1
《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》深入浅出地阐述了快速傅里叶变换(FFT)的原理,系统地总结了各类FFT算法,并广泛精辟地引见了FFT在视频和音频信号处理中的各种应用。
《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》在阐述了离散傅里叶变换(DFT)的原理和性质之后,详细讨论了时域抽取(DIT)和频域抽取(DIF)的各类快速算法。
论述了近似计算DFT的整数FFT、二维及多维信号FFT、非均匀DFT等原理和技术。
《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》还详细讨论了FFT的应用,给出了大量实例。
每章之后附有小结、习题,并附有课程实践和参考文献。
《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》语言流畅、图文并茂,通过使用大量图、表、框图,为读者提供了直观和生动的资料,并给出了最新的MATLAB程序和源代码。
《国际信息工程先进技术译丛·快速傅里叶变换:算法与应用》可供通信、视频等信号处理领域的工程技术人员、研究人员参考使用,也适用于相关专业本科高年级学生和研究生,以及教师和自学者。
2021/11/1 17:35:43 39.39MB 算法
1
标准的SCE算法的matlab实现,由Duan本人编写,可以运转
2018/10/26 23:49:18 420KB SCE算法
1
基于对二级倒立摆的数学建模,引入二次型最优控制率。
编写MATLAB程序,对零碎进行仿真分析。
得出摆杆及小车位置变化曲线。
1
1、写出书中习题3.13所用指令,用DEBUG运转并察看和验证运转结果,在实验报告中画出堆栈区和SP的内容变化过程示意图。
2、用加减法指令计算下列各组十六进制数加减结果并和你的手算结果比较:(1)34H,22H(2)56H,78H(3)A5,79H(4)1284H,5678H(5)A758H,347FH编一段程序,在内存中自SQTAB(0200H)地址开始的连续10个单元中存放0-9的平方值。
要求利用简单的查表法NUM(0210)单元中指定数(0-9)的平方值,并将所求平方值存入RESULT(0211)单元。
2021/5/19 13:15:53 558KB 汇编实验报告
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡