图卷积相关ppt下载经过图结构数据中部分有标签的节点数据对卷积神经网络结构模型训练,使网络模型对其余无标签的数据进行进一步分类。
2015/1/5 20:43:51 28.32MB 图卷积ppt 图卷积
1
在人工神经网络的实际应用中,BP网络广泛应用于函数逼近、模式识别/分类、数据压缩等,80%~90%的人工神经网络模型是采用BP网络或它的变化方式,它也是前馈网络的核心部分,体现了人工神经网络最精华的部分。
2020/10/11 4:07:58 2KB MATLAB BP神经网络,分类
1
opnet14.5自带的pksw网络运转仿真时出错。
这里提供一个可用的pksw网络模型。
2020/2/24 14:08:33 210KB opnet 包交换
1
包括随机趋势外推模型、时间序列模型,神经网络模型等
2016/8/27 20:32:12 32.05MB 经济预测 MATLAB PPT
1
采用最简约的编程方法,构建基于matlab软件的BP神经网络模型,用于人口或其它预测,效果较好。
2022/9/8 0:59:43 2KB bp
1
常用深度网络模型,深度卷积网络、深度循环网络,生成抗衡网络
1
与图论的研究有所不同,复杂网络的研究更侧重于从各种实际网络的现象之上抽象出一般的网络几何量,并用这些一般性质指导更多实际网络的研究,进而通过讨论实际网络上的具体现象发展网络模型的一般方法,最后讨论网络本身的构成机制。
2022/9/5 23:18:55 1.93MB 复杂网络
1
bpnn神经网络代码,是深度进修中一种比较常用的反馈神经网络模型
2022/9/4 14:11:05 126KB bpnn 神经网络
1
随着射频功放非线性对射频前端的影响日益增大,使得功放建模变得越来越重要。
提出了一种自顺应模糊小波神经网络模型结构,并利用改进的粒子群优化算法,建立有记忆的功放模型。
将小波函数融入到自顺应模糊推理系统的模糊规则中,得到新的网络模型;在粒子群算法中引入最差位置影响因子,提高搜索效率,并进一步简化,忽略粒子的速度项,同时采用与顺应度函数值相关的动态变化惯性权重,加快了收敛速度,避免出现"早熟"现象。
仿真结果表明:该方法建立的功放模型误差小、精度高,能够有效地表征功放特性。
1
,利用TOPSIS法计算网络训练理想输出样本值。
首先建立起包括3个投入和4个产出的企业技术创新测度评价目标体系,然后根据综合评价要求和网络训练学习的可行性、有效性,设计出3.1O.1拓扑结构的BP神经网络模型,其中,网络输入为3个技术创新投入测度,网络输出为1个技术创新测度评价值,而用于神经网络训练学习的理想输出是根据4个技术创新产出测度,运用TOPSIS法计算得出的综合评价值。
实证部分,以9家上市企业近四年技术创新投入产出目标值样本为例,运用本文所提出的方法,借助MATLAB神经网络工具箱,通过大量的学习样本的测试和训练,使模型的误差值达到预定的范围内,从而建立起可用于企业技术创新测度综合评价的神经网络模型。
2017/8/12 4:40:07 976B topsis matlab 源码
1
共 108 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡