常用的神经网络是通过固定的网络结构得到最优权值,使网络的实用性遭到影响。
引入了一种基于方向的交叉算子和变异算子,同时把模拟退火算法引入了遗传算法,结合遗传算法和模拟退火算法的优点,提出了一种优化神经网络结构的遗传——模拟退火混合算法,实现了网络结构和权值的同时优化。
仿真实验表明,与遗传算法和模拟退火算法相比,该算法优化的神经网络收敛速度较快、预测精度较高,提高了网络的处理能力。
1
包含文档、源代码、测试结果展示
2018/5/14 22:05:13 210KB C语言,作业车间调度问题
1
现代优化算法是80年代初衰亡的启发式算法。
这些算法包括禁忌搜索(tabusearch),模拟退火(simulatedannealing),遗传算法(geneticalgorithms),人工神经网络(neuralnetworks)。
它们主要用于解决大量的实际应用问题。
目前,这些算法在理论和实际应用方面得到了较大的发展。
无论这些算法是怎样产生的,它们有一个共同的目标-求NP-hard组合优化问题的全局最优解。
1
包含了数学建模常用的算法,如多元回归、决策树、粒子群算法、模拟退火等30个算法以及对应论文,对于数学建模有很大协助。
2015/11/11 19:17:09 353.81MB 数学建模 建模算法 建模论文
1
今天来学习变量优化问题。
寻找使成本函数最小的题解。
适用于题解相互独立的情况,设计随机优化算法、爬山法、模拟退火算法、遗传算法。
优化问题的的精髓是:1、将题解转化为数字序列化,可以写出题解范围。
2、成本函数能返回值问题场景:所有乘客从不同的地方飞到同一个目的地,服务人员等待所有人到来以后将人一次性接走。
离开时,服务人员将人一次性带到飞机场,所有乘客等待自己的航班离开。
要处理的问题:如何设置乘客的到来和离开航班,以及接送机的时间,使得总代价最小。
将题解设为数字序列。
数字表示某人乘坐的第几次航班,从0开始,例如[1,4,3,2,7,3,6,3,2]表示第1个人做第
2019/2/25 18:01:13 116KB des算法 domain origin
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡