实验一三点式正弦波振荡器(模块1)一、实验目的1.掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2.通过实验掌握晶体管静态工作点、反馈系数大小对振荡幅度的影响。
图1-1正弦波振荡器(4.5MHz)将开关S3拨上S4拨下,S1、S2全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡频率。
振荡器的频率约为4.5MHz振荡电路反馈系数:F=振荡器输出通过耦合电容C3(10P)加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号Q1调谐放大,再经变压器耦合从J1输出。
三、实验步骤1.根据图在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2.研究振荡器静态工作点对振荡幅度的影响。
3.将开关S3拨上S4拨下,S1、S2全拨下,构成LC振荡器。
4.改变上偏置电位器RA1,记下发射极电流,并用示波器测量对应点的振荡幅度VP-P(峰—峰值)记下对应峰峰值以及停振时的静态工作点电流值。
5.经测量,停振时的静态工作点电流值为2.23mA6.分析输出振荡电压和振荡管静态工作点的关系,按以上调整静态工作点的方法改变Ieq,并测量相应的,且把数据记入下表。
Ieq(mA)1.201.401.591.802.23Up-p(mV)304348384428停振7.晶体振荡器:将开关S4拨上S3拨下,S1、S2全部拨下,由Q3、C13、C20、晶体CRY1与C10构成晶体振荡器(皮尔斯振荡电路),在振荡频率上晶体等效为电感。
8.拍摄晶振正弦波如下:f=4.19MHz四、实验结果分析分析静态工作点、反馈系数F对振荡器起振条件和输出波形振幅的影响,并用所学理论加以分析。
答:晶体管的起振条件是约等于0.6V,使静态工作点处于此电压附近,并加入正反馈。
同时随着静态电流的增大,输出波形的幅度也增大。
增长到一定程度后,由于晶体管的非线性特性和电源电压的限制,输出波形振幅不再增长,振荡建立的过程结束,放大倍数的值下降至稳定。
|AF|=1,输出波形振幅维持在一个确定值,电路构成动态平衡。
五、实验仪器1.高频实验箱1台2.双踪示波器1台3.万用表1块
1
全固态激光器被动锁模是产生超短脉冲的一种有效方法。
在基于Nd3+掺杂激光材料被动锁模产生超短脉冲的研究中,无序晶体成为研究的热点。
结合相关工作,总结了Nd3+掺杂无序晶体被动锁模激光器的研究现状,瞻望了Nd3+掺杂无序晶体在超强超短脉冲制备中的发展前景。
2018/1/3 17:07:13 7.52MB 激光器 Nd3+掺杂 四能级激 准三能级
1
晶体振荡器在电子设计中可以说是无处不在,并且在扮演着非常重要的角色,晶振对电路板的角色好比心脏于人,其重要性不言而喻。
但是不要小看这么简单的晶振,如果设计不好,可能会直接影响到产品稳定性。
相信很多工程师在做无源晶振设计时,会遇到无源晶振不起振或者输出频率有偏差的现象,有些工程师会凭借经验来处理这样的问题,也有很多工程师可能就束手无策,不知道该从何查找原因?本文将从原理上为大家讲解如何避免出现这种问题,并对无源晶振进行更合理选型。
2016/5/13 18:10:11 147KB 晶体
1
光子晶体光纤的出现,为高功率光纤激光器的关键技术-大模区光纤的实现提供了新途径。
基于铒镱共掺磷酸盐材料的包层掺杂新结构出现,为实现愈加紧凑的光纤激光器提供了可能。
常规高功率光纤激光器中的抽运技术,谐振腔技术和相干组束技术也在不断融入高功率光子晶体光纤激光器。
高功率光子晶体光纤激光器的调Q和锁模输出也已经实现。
2019/11/15 15:51:05 1.23MB 光纤光学 光纤激光 光子晶体
1
本人研究光子晶体,这是一篇介绍光子晶体微腔结构的文章。
我觉得对这方面的协助很大,希望给你们协助。
2021/11/12 14:49:23 280KB 光子晶体
1
并联谐振晶体振荡器、串联谐振晶体振荡器、电容三点式、电感三点式、互感耦合反应振荡器,multisim仿真
2022/9/7 7:20:22 1.04MB multisim仿真
1
有源光子晶体光纤的芯径较大,次要用于实现高峰值功率(高能量)的脉冲放大输出。
目前只有NKTPhotonics公司可提供商品化的掺镱(Yb
2022/9/6 11:57:13 1.55MB
1
利用立体波展开法计算二维声子晶体的能带结构并画出能带结构图
2022/9/3 13:39:08 6KB MATLAB
1
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡