YJK地震波库包含2000余条自然波分类方式同YJK地震波已进行归一化处理
2020/1/11 19:10:03 68.38MB 盈建科 YJK 地震波 天然波
1
包括单特征的样本的最小二乘法计算,单特征样本的梯度下降法--代数版本多特征样本的梯度下降--矩阵运算表示。
在矩阵表示的梯度下降法中运用标准差归一化(可选择注释)。
有比较详细的注释
2017/8/23 6:30:16 2KB 梯度下降法 matlab
1
对一个一维数组举行了离差标准化,讲数组数据归一化,进而举行下一步神经网络的建模。
2015/5/19 20:51:03 139B python
1
对一个一维数组举行了离差标准化,讲数组数据归一化,进而举行下一步神经网络的建模。
2020/1/11 16:49:51 139B python
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2019/5/1 5:12:10 973B 数字全息
1
N=512;A=zeros(N,N);B=zeros(N,N);forI=1:1:256J=1:1:256ImageNum=double(Image(I,J,1));A(I,J)=ImageNum/255;B(I,J)=0;endendfigure;imshow(A);pi=3.1415926;forI=1:1:NforJ=1:1:NR=rand(1,1);%生成一个元素在0,1之间均匀分布的随机矩阵RB(I,J)=A(I,J)*sin(R*2*pi);%平滑函数的傅里叶变换谱A(I,J)=A(I,J)*cos(R*2*pi);F(I,J)=A(I,J)+j*B(I,J);endEnd%限制振幅的动态范围,进步编码的精度F=fft2(F);%作二维快速傅里叶变换FFTMax=max(max(abs(F)));F=F/Max;A=real(F);B=imag(F);aIpha=0.5;%定义载波参数aIphaforI=1:1:NforJ=1:1:NXcos=(J-1)/127;A1(I,J)=cos(2*pi*aIpha*Xcos);B1(I,J)=sin(2*pi*aIpha*Xcos);endend%全息图数据区forI=1:1:NforJ=1:1:NHoIodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J));endEndM=512;N=512;%定义全息图的大小Hologram=zeros(M,M);S=M/N;%定义每个抽样单元大小forI=1:1:NforJ=1:1:NXa=(J-1)*S+1;Xb=J*S;Ya=(I-1)*S+1;Yb=I*S;forIx=Xa:1:XbforIy=Ya:1:YbHoIogram(Iy,Ix)=HoIodata(I,J);endendendendMax=max(max(HoIogram));HoIogram=HoIogram/Max;figure;imshow(HoIogram);%以下是用matlab分别计算函数各抽样点的傅里叶变换谱的幅角与模,并对各点的模归一化object=fft2(HoIogram);object=fftshift(object);%用matlab中的移谱函数fftshift()将频谱的低频成分移到中心,以避免再现时像分散在边缘object=abs(object);object=1000*object/max(max(object));figure;imshow(object);
2017/1/5 5:10:15 973B 数字全息
1
为了精确测量纳米颗粒的尺寸,依据透射电子显微镜拍摄的纳米颗粒图像,提出了一种基于U-Net卷积神经网络的颗粒自动分割方法。
将U-Net部分网络结构与批量归一化层相结合,减弱了网络对初始化的依赖,提升了训练速度。
对纳米颗粒图像进行半隐式偏微分方程滤波以增强图像边缘信息,利用改进的U-Net网络训练纳米颗粒个体分割模型,得到了分割结果。
研究结果表明,所提方法能精确分割出图像中的纳米颗粒,对边缘模糊和强度不均的纳米颗粒的分割效果提升显著。
2015/11/13 18:35:18 8.84MB 图像处理 纳米颗粒 U-Net卷积 半隐式偏
1
Convolution+BatchNorm+Scale+Relu的组合模块在卷积后进行归一化,可以加速训练收敛。
但在推理时BatchNorm非常耗时,可以将训练时学习到的BatchNorm+Scale的线性变换参数融合到卷积层,替换原来的Convolution层中weights和bias,实现在不影响精确度的前提下加速预测时间。
2018/10/17 16:11:41 9KB caffe加速 移除dropout 融合BN层
1
MATLAB完成图像婚配的代码:都是通过归一化的傅里叶描述子,来完成图像婚配,旋转不变性,有一定的尺度,
2021/9/7 13:23:06 4.8MB 傅里叶描述
1
以波动方程和受激拉曼散射(SRS)物质方程为基础,采用光种子法,建立了固体相干反斯托克斯拉曼频移器的归一化耦合波方程,研讨了晶体中反斯托克斯光转换效率。
在脉冲抽运条件下分析了归一化增益系数G、归一化相位失配系数ΔK以及一阶斯托克斯光种子的归一化光场振幅ψs0三个变量对固体相干反斯托克斯拉曼频移器的影响,并作出了一系列相应曲线,由所得曲线估算了各归一化变量的合理取值范围。
分析结果表明,在ΔK=0时,通过增大ψs0来打破拉曼增益抑制的影响,其转换效率峰值可达到44%。
而当ψs0较弱时,可选取合适的相位失配系数,反斯托克斯光转换效率可达40%。
2015/8/26 22:14:19 2.96MB 激光器 相干反斯 斯托克斯 固体拉曼
1
共 120 条记录 首页 上一页 下一页 尾页
在日常工作中,钉钉打卡成了我生活中不可或缺的一部分。然而,有时候这个看似简单的任务却给我带来了不少烦恼。 每天早晚,我总是得牢记打开钉钉应用,点击"工作台",再找到"考勤打卡"进行签到。有时候因为工作忙碌,会忘记打卡,导致考勤异常,影响当月的工作评价。而且,由于我使用的是苹果手机,有时候系统更新后,钉钉的某些功能会出现异常,使得打卡变得更加麻烦。 另外,我的家人使用的是安卓手机,他们也经常抱怨钉钉打卡的繁琐。尤其是对于那些不太熟悉手机操作的长辈来说,每次打卡都是一次挑战。他们总是担心自己会操作失误,导致打卡失败。 为了解决这些烦恼,我开始思考是否可以通过编写一个全自动化脚本来实现钉钉打卡。经过一段时间的摸索和学习,我终于成功编写出了一个适用于苹果和安卓系统的钉钉打卡脚本。
2024-04-09 15:03 15KB 钉钉 钉钉打卡